
UNIT III KNOWLEDGE REPRESENTATION

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-

Backward Chaining – Resolution – Knowledge Representation - Ontological

Engineering-Categories and Objects – Events - Mental Events and Mental Objects -

Reasoning Systems for Categories - Reasoning with Default Information

FIRST ORDER PREDICATE LOGIC

Propositional logic is a declarative language because its semantics is based on a truth relation

between sentences and possible worlds. It also has sufficient expressive power to deal with

partial information, using disjunction and negation.

Syntax and Semantics of First Order Predicate Logic

The domain of a model is DOMAIN the set of objects or domain elements it contains. The

domain is required to be nonempty—every possible world must contain at least one object.

Figure 8.2 shows a model with five objects: Richard the Lionheart, King of England from

1189 to 1199; his younger brother, the evil King John, who ruled from 1199 to 1215; the left

legs of Richard and John; and a crown.The objects in the model may be related in various

ways. In the figure, Richard and John are brothers. Formally speaking, a relation TUPLE is

just the set of tuples of objects that are related. (A tuple is a collection of objects arranged in

a fixed order and is written with angle brackets surrounding the objects.) Thus, the

brotherhood relation in this model is the set

{ <Richard the Lionheart, King John>, < King John, Richard the Lionheart> }

The crown is on King John’s head, so the “on head” relation contains just one tuple, _the

crown, King John_. The “brother” and “on head” relations are binary relations—that is,

they relate pairs of objects. Certain kinds of relationships are best considered as functions, in

that a given object must be related to exactly one object in this way. For example, each person

has one left leg, so the model has a unary “left leg” function that includes the following

mappings:

<Richard the Lionheart> → Richard’s left leg

<King John> → John’s left leg

Symbols and interpretations

We turn now to the syntax of first-order logic . The basic syntactic elements of first-order

logic are the symbols that stand for objects, relations, and functions. The symbols, therefore,

come in three kinds: constant symbols,which stand for objects; predicate symbols, which

stand for relations; and function symbols, which stand for functions. We adopt the

convention that these symbols will begin with uppercase letters. For example, we might use

the constant symbols Richard and John; the predicate symbols Brother , OnHead, Person,

King, and Crown; and the function symbol LeftLeg.

Each model includes an interpretation that specifies exactly which objects, relations and

functions are referred to by the constant, predicate, and function symbols. One possible

interpretation for our example is as follows

 Richard refers to Richard the Lionheart and John refers to the evil King John.

 Brother refers to the brotherhood relation, that is, the set of tuples of objects;

OnHead refers to the “on head” relation that holds between the crown and King

John; Person, King, and Crown refer to the sets of objects that are persons, kings,

and crowns.

 LeftLeg refers to the “left leg” function

A complete description from the formal grammar is as follows

Term

A term is a logical expression that refers TERM to an object. Constant symbols are

therefore terms,
but it is not always convenient to have a distinct symbol to name every object. For example,

in English we might use the expression “King John’s left leg” rather than giving a name to

his leg. This is what function symbols are for: instead of using a constant symbol, we use

LeftLeg(John). The formal semantics of terms is straightforward. Consider a term f(t1, .

. . , tn). The function symbol f refers to some function in the model.

Atomic sentences

Atomic sentence (or atom for short) is formed from a predicate symbol optionally followed

by a parenthesized list of terms, such as Brother (Richard , John).

Atomic sentences can have complex terms as arguments. Thus,

Married(Father (Richard),Mother (John)) states that Richard the Lionheart’s father is

married to King John’s mother.

Complex Sentences

We can use logical connectives to construct more complex sentences, with the same syntax

and semantics as in propositional calculus

￢Brother (LeftLeg(Richard), John)

Brother (Richard , John) ∧ Brother (John,Richard)

King(Richard) ∨ King(John)

￢King(Richard) ⇒ King(John) .

Quantifiers

Quantifiers are used to express properties of entire collections of objects, instead of

enumerating the objects by name. First-order logic contains two standard quantifiers, called

universal and existential

Universal quantification (∀)

“All kings are persons,” is written in first-order logic as

∀x King(x) ⇒ Person(x)

∀ is usually pronounced “For all . . .” Thus, the sentence says, “For all x, if x is a king,

then x is a person.” The symbol x is called a variable. A term with no variables is called

a ground term.

Consider the model shown in Figure 8.2 and the intended interpretation that goes with it. We

can extend the interpretation in five ways:

x → Richard the Lionheart,

x → King John,

x → Richard’s left leg,

x → John’s left leg,

x → the crown.

The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true in the original model

if the sentence King(x) ⇒ Person(x) is true under each of the five extended interpretations.

That is, the universally quantified sentence is equivalent to asserting the following five

sentences:

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.

King John is a king ⇒ King John is a person.

Richard’s left leg is a king ⇒ Richard’s left leg is a person.

John’s left leg is a king ⇒ John’s left leg is a person.

The crown is a king ⇒ the crown is a person.

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a

statement

about some object in the universe without naming it, by using an existential quantifier.

To say, for example, that King John has a crown on his head, we write

∃ x Crown(x) ∧ OnHead(x, John) .

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”

More precisely, ∃x P is true in a given model if P is true in at least one extended

interpretation

that assigns x to a domain element. That is, at least one of the following is true:

Richard the Lionheart is a crown ∧ Richard the Lionheart is on John’s head;

King John is a crown ∧ King John is on John’s head;

Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head;

John’s left leg is a crown ∧ John’s left leg is on John’s head;

The crown is a crown ∧ the crown is on John’s head.

The fifth assertion is true in the model, so the original existentially quantified sentence is true

in the model.

Just as ⇒ appears to be the natural connective to use with ∀, ∧ is the natural connective

to use with ∃.

Using ∧ as the main connective with ∀ led to an overly strong statement in the example

in the previous section; using ⇒ with ∃ usually leads to a very weak statement, indeed.

Consider the following sentence:

∃ x Crown(x) ⇒ OnHead(x, John) .
Applying the semantics, we see that the sentence says that at least one of the following

assertions is true:

Richard the Lionheart is a crown ⇒ Richard the Lionheart is on John’s head;

King John is a crown ⇒ King John is on John’s head;

Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;

and so on. Now an implication is true if both premise and conclusion are true, or if its premise

is false. So if Richard the Lionheart is not a crown, then the first assertion is true and the

existential is satisfied. So, an existentially quantified implication sentence is true whenever

any object fails to satisfy the premise

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The

simplest case is where the quantifiers are of the same type. For example, “Brothers are

siblings” can be written as

∀ x ∀ y Brother (x, y) ⇒ Sibling(x, y)

Consecutive quantifiers of the same type can be written as one quantifier with several

variables. For example, to say that siblinghood is a symmetric relationship, we can write

∀ x, y Sibling(x, y) ⇔ Sibling(y, x) .
In other cases we will have mixtures. “Everybody loves somebody” means that for every

person, there is someone that person loves:

∀ x ∃ y Loves(x, y) .
On the other hand, to say “There is someone who is loved by everyone,” we write

∃ y ∀ x Loves(x, y) .
The order of quantification is therefore very important. It becomes clearer if we insert

parentheses.

∀ x (∃ y Loves(x, y)) says that everyone has a particular property, namely, the property

that they love someone. On the other hand, ∃ y (∀ x Loves(x, y)) says that someone in

the world has a particular property, namely the property of being loved by everybody.

Connections between ∀ and ∃
The two quantifiers are actually intimately connected with each other, through negation.
Asserting

that everyone dislikes parsnips is the same as asserting there does not exist someone who

likes them, and vice versa:

∀ x ￢Likes(x, Parsnips) is equivalent to ￢∃ x Likes(x, Parsnips) .
We can go one step further: “Everyone likes ice cream” means that there is no one who does

not like ice cream:

∀ x Likes(x, IceCream) is equivalent to ￢∃ x ￢Likes(x, IceCream) .

Equality

We can use the equality symbol to signify that two terms refer to the same object. For

example,

Father (John)=Henry

says that the object referred to by Father (John) and the object referred to by Henry are the

same.

The equality symbol can be used to state facts about a given function, as we just did for the
Father symbol. It can also be used with negation to insist that two terms are not the same

object. To say that Richard has at least two brothers, we would write

∃ x, y Brother (x,Richard) ∧ Brother (y,Richard) ∧￢(x=y) .

USING FIRST ORDER LOGIC

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such

sentences are called assertions. For example, we can assert that John is a king, Richard is a

person, and all kings are persons:

TELL(KB, King(John))

TELL(KB, Person(Richard))

TELL(KB, ∀ x King(x) ⇒ Person(x))

We can ask questions of the knowledge base using ASK. For example,

ASK(KB, King(John))

returns true. Questions asked with ASK are called queries or goals

If we want to know what value of x makes the sentence true, we will need a different

function, ASKVARS, which we call with

ASKVARS(KB, Person(x))

and which yields a stream of answers. In this case there will be two answers: {x/John} and

{x/Richard}. Such an answer is called a substitution or binding list.

The kinship domain

The first example we consider is the domain of family relationships, or kinship. This domain

includes facts such as “Elizabeth is the mother of Charles” and “Charles is the father of

William” and rules such as “One’s grandmother is the mother of one’s parent.”

Clearly, the objects in our domain are people. We have two unary predicates, Male and

Female. Kinship relations—parenthood, brotherhood, marriage, and so on—are represented

by binary predicates: Parent, Sibling, Brother , Sister , Child , Daughter, Son, Spouse,

Wife, Husband, Grandparent , Grandchild , Cousin, Aunt, and Uncle. We use functions

for Mother and Father , because every person has exactly one of each of these.

For example, one’s mother is one’s female parent:

∀ m, c Mother (c)=m ⇔ Female(m) ∧ Parent(m, c) .
One’s husband is one’s male spouse:

∀ w, h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .
Male and female are disjoint categories:

∀ x Male(x) ⇔ ￢Female(x) .
Parent and child are inverse relations:

∀ p, c Parent(p, c) ⇔ Child (c, p) .
A grandparent is a parent of one’s parent:

∀ g, c Grandparent (g, c) ⇔ ∃p Parent(g, p) ∧ Parent(p, c) .
A sibling is another child of one’s parents:

∀ x, y Sibling(x, y) ⇔ x _= y ∧ ∃p Parent(p, x) ∧ Parent(p, y) .
Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are

commonly associated with purely mathematical domains. Our kinship axioms are also

definitions; they have the form ∀ x, y P(x, y) ⇔ The axioms define the Mother

function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of

other predicates.

For example, consider the assertion that siblinghood is symmetric:

∀ x, y Sibling(x, y) ⇔ Sibling(y, x) .

The WUMPUS world

The wumpus world is a cave consisting of rooms connected by passageways. Lurking

somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room.

The wumpus can be shot by an agent, but the agent has only one arrow. Some rooms contain

bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus,

which is too big to fall in). The only mitigating feature of this bleak environment is the

possibility of finding a heap of gold. Although the wumpus world is rather tame by modern

computer game standards, it illustrates some important points about intelligence. A sample

wumpus world is shown in Figure 7.2.

The wumpus agent receives a percept vector with five elements. The corresponding first-

order sentence stored in the knowledge base must include both the percept and the time at

which it occurred; otherwise, the agent will get confused about when it saw what. We use

integers for time steps. A typical percept sentence would be

Percept ([Stench, Breeze, Glitter , None, None], 5) .
Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The

actions in the wumpus world can be represented by logical terms:

Turn(Right), Turn(Left), Forward , Shoot , Grab, Climb .

To determine which is best, the agent program executes the query

ASKVARS(∃ a BestAction(a, 5)) ,

which returns a binding list such as {a/Grab}. The agent program can then return Grab as

the action to take. The raw percept data implies certain facts about the current state. For

example:

∀t,s,g,m,c Percept ([s,Breeze,g,m,c],t) ⇒ Breeze(t) ,

∀t,s,b,m,c Percept ([s,b,Glitter,m,c],t) ⇒ Glitter (t)

These rules exhibit a trivial form of the reasoning process called perception.

Simple “reflex” behavior can also be implemented by quantified implication sentences. For

example, we have

∀ t Glitter (t) ⇒ BestAction(Grab, t) .
Given the percept and rules from the preceding paragraphs, this would yield the desired

conclusion

BestAction(Grab, 5)—that is, Grab is the right thing to do.

For example, if the agent is at a square and perceives a breeze, then that square is breezy:

∀ s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s) .
It is useful to know that a square is breezy because we know that the pits cannot move about.

Notice that Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very important, not breezy (or

not smelly), the agent can deduce where the pits are (and where the wumpus is). first-order

logic just needs one axiom:

∀ s Breezy(s) ⇔ ∃r Adjacent (r, s) ∧ Pit(r) .

SUBSTITUTION

Let us begin with universal quantifiers

∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) .
Then it seems quite permissible to infer any of the following sentences:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)) .
The rule of Universal Instantiation (UI for short) says that we can infer any sentence

obtained by substituting a ground term (a term without variables) for the variable. Let

SUBST(θ,α) denote the result of applying the substitution θ to the sentence α. Then

the rule is written

∀v α SUBST({v/g}, α)

for any variable v and ground term g. For example, the three sentences given earlier are

obtained with the substitutions {x/John}, {x/Richard }, and {x/Father (John)}.

In the rule for Existential Instantiation, the variable is replaced by a single new constant

symbol. The formal statement is as follows: for any sentence α, variable v, and constant

symbol k that does not appear elsewhere in the knowledge base,

∃v α SUBST({v/k}, α)

For example, from the sentence

∃ x Crown(x) ∧ OnHead(x, John)

we can infer the sentence

Crown(C1) ∧ OnHead(C1, John)

EXAMPLE

Suppose our knowledge base contains just the sentences

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

King(John)

Greedy(John)

Brother (Richard, John)

Then we apply UI to the first sentence using all possible ground-term substitutions from the

vocabulary of the knowledge base—in this case, {x/John} and {x/Richard }. We obtain

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) ,
and we discard the universally quantified sentence. Now, the knowledge base is essentially

propositional if we view the ground atomic sentences

King(John),

Greedy(John), and so on—as proposition symbols.

UNIFICATION

Lifted inference rules require finding substitutions that make different logical expressions

look identical. This process is called unification and is a key component of all first-order

inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier for

them if one exists:

UNIFY(p, q)=θ where SUBST(θ, p)= SUBST(θ, q) .
Suppose we have a query

AskVars(Knows(John, x)): whom does John know? Answers can be found by finding all

sentences in the knowledge base that unify with Knows(John, x). Here are the results of

unification with four different sentences that might be in the knowledge base:

UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}

UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John}

UNIFY(Knows(John, x), Knows(y,Mother (y))) = {y/John, x/Mother (John)}

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail .

The last unification fails because x cannot take on the values John and Elizabeth at

the same time. Now, remember that Knows(x, Elizabeth) means “Everyone knows

Elizabeth,” so we should be able to infer that John knows Elizabeth. The problem arises only

because the two sentences happen to use the same variable name, x. The problem can be

avoided by standardizing apart one of the two sentences being unified, which means

renaming its variables to avoid name clashes.

For example, we can rename x in Knows(x, Elizabeth) to x17 (a new variable name)

without changing its meaning. Now the unification will work:

UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, x17/John}

UNIFY should return a substitution that makes the two arguments look the same. But

there could be more than one such unifier. For example, UNIFY(Knows(John, x),

Knows(y, z)) could return {y/John, x/z} or {y/John, x/John, z/John}. The first

unifier gives Knows(John, z) as the result of unification, whereas the second gives

Knows(John, John). The second result could be obtained from the first by an additional

substitution {z/John}; we say that the first unifier is more general than the second, because

it places fewer restrictions on the values of the variables.

An algorithm for computing most general unifiers is shown in Figure 9.1. The process
is simple: recursively explore the two expressions simultaneously “side by side,” building up

a unifier along the way, but failing if two corresponding points in the structures do not match.

There is one expensive step: when matching a variable against a complex term, one must

check whether the variable itself occurs inside the term; if it does, the match fails because no

consistent unifier can be constructed

FORWARD CHAINING

The following are first-order definite clauses:

King(x) ∧ Greedy(x) ⇒ Evil(x)

King(John)

Greedy(y)

Unlike propositional literals, first-order literals can include variables, in which case those

variables are assumed to be universally quantified. Consider the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The

country Nono, an enemy of America, has some missiles, and all of its missiles were sold to

it by ColonelWest, who is American.

We will prove thatWest is a criminal. First, we will represent these facts as first-order definite

clauses. The next section shows how the forward-chaining algorithm solves the problem.

“. . . it is a crime for an American to sell weapons to hostile nations”:

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x) - - -(9.3)

“Nono . . . has some missiles.” The sentence ∃ x Owns(Nono, x)∧Missile(x) is

transformed

into two definite clauses by Existential Instantiation, introducing a new constant M1:

Owns(Nono,M1) -- (9.4)

Missile(M1) - - - - - - (9.5)

“All of its missiles were sold to it by Colonel West”:

Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x,

Nono)

- - - - - -(9.6)

We will also need to know that missiles are weapons:

Missile(x) ⇒ Weapon(x)

- - - - - -(9.7)

and we must know that an enemy of America counts as “hostile”:

Enemy(x,America) ⇒ Hostile(x) -- (9.8)

“West, who is American ”:

American(West) -- (9.9)

The country Nono, an enemy of America ”:

Enemy(Nono,America)--- (9.10)

This knowledge base contains no function symbols and is therefore an instance of the class

of Datalog knowledge bases. Datalog DATALOG is a language that is restricted to first-order

definite clauses with no function symbols. Datalog gets its name because it can represent the

type of statements typically made in relational databases.

A simple Forward-Chaining Algorithm

The first forward-chaining algorithm we consider is a simple one, shown in Figure 9.3.

Starting from the known facts, it triggers all the rules whose premises are satisfied, adding

their conclusions to the known facts. The process repeats until the query is answered

(assuming that just one answer is required) or no new facts are added. We use our crime

problem to illustrate how FOL-FC-ASK works. The implication

sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required:

On the first iteration, rule (9.3) has unsatisfied premises.

Rule (9.6) is satisfied with {x/M1}, and Sells(West,M1, Nono) is added.

Rule (9.7) is satisfied with {x/M1}, and Weapon(M1) is added.

Rule (9.8) is satisfied with {x/Nono}, and Hostile(Nono) is added.

On the second iteration, rule (9.3) is satisfied with {x/West, y/M1, z/Nono}, and

Criminal (West) is added.

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are

possible at this point because every sentence that could be concluded by forward chaining is

already contained explicitly in the KB. Such a knowledge base is called a fixed point of the

inference process. Fixed points reached by forward chaining with first-order definite clauses

are similar to those for propositional forward chaining.

FOL-FC-ASK is easy to analyze. First, it is sound, because every inference is just an

application of Generalized Modus Ponens, which is sound. Second, it is complete for definite

clause knowledge bases; that is, it answers every query whose answers are entailed by any

knowledge base of definite clauses.

BACKWARD CHAINING

The second major family of logical inference algorithms uses the backward chaining

approach for definite clauses. These algorithms work backward from the goal, chaining

through rules to find known facts that Support the proof.

A backward-chaining algorithm

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-

ASK(KB, goal) will be proved if the knowledge base contains a clause of the form lhs ⇒

goal, where lhs (left-hand side) is a list of conjuncts. An atomic fact like American(West)

is considered as a clause whose lhs is the empty list. Now a query that contains variables

might be proved in multiple ways. For example, the query Person(x) could be proved with

the substitution {x/John} as well as with {x/Richard }. So we implement FOL-BC-ASK

as a generator— a function that returns multiple times, each time giving one possible result.

Backward chaining is a kind of AND/OR search—the OR part because the goal query can

be proved by any rule in the knowledge base, and the AND part because all the conjuncts in

the lhs of a clause must be proved. FOL-BC-OR works by fetching all clauses that might

unify with the goal, standardizing the variables in the clause to be brand-new variables, and

then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the

lhs, using FOL-BC-AND. That function in turn works by proving each of the conjuncts in

turn, keeping track of the accumulated substitution as we go. Figure 9.7 is the proof tree for

deriving Criminal (West) from sentences (9.3) through (9.10).

Backward chaining, as we have written it, is clearly a depth-first search algorithm. This

means that its space requirements are linear in the size of the proof (neglecting, for now, the

space required to accumulate the solutions). It also means that backward chaining (unlike

forward chaining) suffers from problems with repeated states and incompleteness.

RESOLUTION

We describe how to extend resolution to first-order logic.

Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in conjunctive

normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of

literals.6 Literals can contain variables, which are assumed to be universally quantified. For

example, the sentence

∀ x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x)

becomes, in CNF,

￢American(x) ∨ ￢Weapon(y) ∨ ￢Sells(x, y, z) ∨ ￢Hostile(z) ∨ Criminal (x)

Every sentence of first-order logic can be converted into an inferentially equivalent CNF

sentence.

We illustrate the procedure by translating the sentence “Everyone who loves all animals is

loved by someone,” or

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

The steps are as follows:

• Eliminate implications:

∀ x [￢∀ y ￢Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

• Move ￢ inwards: In addition to the usual rules for negated connectives, we need rules

for negated quantifiers. Thus, we have

￢∀x p becomes ∃ x ￢p
￢∃x p becomes ∀ x ￢p .
Our sentence goes through the following transformations:

∀ x [∃ y ￢(￢Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]

∀ x [∃ y ￢￢Animal(y) ∧ ￢Loves(x, y)] ∨ [∃ y Loves(y, x)]

∀ x [∃ y Animal (y) ∧￢Loves(x, y)] ∨ [∃ y Loves(y, x)]

Notice how a universal quantifier (∀ y) in the premise of the implication has become an

existential quantifier. The sentence now reads “Either there is some animal that x doesn’t

love, or (if this is not the case) someone loves x.” Clearly, the meaning of the original

sentence has been preserved.

• Standardize variables: For sentences like (∃xP(x))∨(∃xQ(x)) which use the same

variable name twice, change the name of one of the variables. This avoids confusion later

when we drop the quantifiers. Thus, we have

∀ x [∃ y Animal (y) ∧￢Loves(x, y)] ∨ [∃ z Loves(z, x)]

• Skolemize: Skolemization is the process of removing existential quantifiers by

elimination.

In the simple case, it is just like the Existential Instantiation rule of Section 9.1: translate ∃

x P(x) into P(A), where A is a new constant. However, we can’t apply Existential Instantiation

to our sentence above because it doesn’t match the pattern ∃v α; only parts of the sentence

match the pattern. If we blindly apply the rule to the two matching parts we get

∀ x [Animal (A) ∧ ￢Loves(x,A)] ∨ Loves(B, x)

which has the wrong meaning entirely: it says that everyone either fails to love a particular

animal A or is loved by some particular entity B. In fact, our original sentence allows each

person to fail to love a different animal or to be loved by a different person. Thus, we want

the Skolem entities to depend on x and z:

∀ x [Animal (F(x)) ∧￢Loves(x, F(x))] ∨ Loves(G(z), x)

Here F and G are Skolem functions. The general rule is that the arguments of the Skolem

function are all the universally quantified variables in whose scope the existential quantifier

appears. As with Existential Instantiation, the Skolemized sentence is satisfiable exactly

when the original sentence is satisfiable.

• Drop universal quantifiers: At this point, all remaining variables must be universally

quantified. Moreover, the sentence is equivalent to one in which all the universal quantifiers

have been moved to the left. We can therefore drop the universal quantifiers:

[Animal (F(x)) ∧ ￢Loves(x, F(x))] ∨ Loves(G(z), x)

• Distribute ∨ over ∧:

[Animal (F(x)) ∨ Loves(G(z), x)] ∧ [￢Loves(x, F(x)) ∨ Loves(G(z), x)]

This step may also require flattening out nested conjunctions and disjunctions.

Propositional literals are complementary if one is the negation of the other; first-order literals

are complementary if one unifies with the negation of the other. Thus, we have

This rule is called the binary resolution rule because it resolves exactly two literals.

EXAMPLE 1

Consider the crime example. The sentences in CNF are

￢American(x) ∨ ￢Weapon(y) ∨ ￢Sells(x, y, z) ∨ ￢Hostile(z) ∨ Criminal (x)

￢Missile(x) ∨ ￢Owns(Nono, x) ∨ Sells(West, x, Nono)

￢Enemy(x,America) ∨ Hostile(x)

￢Missile(x) ∨Weapon(x)

Owns(Nono,M1) Missile(M1)

American(West) Enemy(Nono,America)

We also include the negated goal ￢Criminal (West). The resolution proof is shown in

Figure 9.11.

Notice the structure: single “spine” beginning with the goal clause, resolving against clauses

from the knowledge base until the empty clause is generated. This is characteristic of

resolution on Horn clause knowledge bases. In fact, the clauses along the main spine

correspond exactly to the consecutive values of the goals variable in the backward-chaining

algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose

positive literal unified with the leftmost literal of the “current” clause on the spine; this is

exactly what happens in backward chaining. Thus, backward chaining is just a special case

of resolution with a particular control strategy to decide which resolution to perform next.

EXAMPLE 2

Our second example makes use of Skolemization and involves clauses that are not definite

clauses. This results in a somewhat more complex proof structure. In English, the problem

is as follows:

Everyone who loves all animals is loved by someone.

Anyone who kills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof

could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack

must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because anyone

who kills an animal is loved by no one, we know that no one loves Jack. On the other hand,

Jack loves all animals, so someone loves him; so we have a contradiction. Therefore,

Curiosity killed the cat.

The proof answers the question “Did Curiosity kill the cat?” but often we want to pose more

general questions, such as “Who killed the cat?” Resolution can do this, but it takes a little

more work to obtain the answer. The goal is ∃w Kills(w, Tuna), which, when negated,

becomes ￢Kills(w, Tuna) in CNF. Repeating the proof in Figure 9.12 with the new negated

goal, we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the

steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the

bindings for the query variables in the proof.

EXAMPLE 3

1. All people who are graduating are happy.

2. All happy people smile.

3. Someone is graduating.

4. Conclusion: Is someone smiling?

Solution:

Convert the sentences into predicate Logic

1. ∀x graduating(x) -> happy(x)

2. ∀x happy(x) -> smile(x)

3. ∃x graduating(x)

4. ∃x smile(x)

(vii) Convert to conjunct of disjuncts form.

EXAMPLE 4

Explain the unification algorithm used for reasoning under predicate logic with an example.

Consider the following facts

a. Team India
b. Team Australia

c. Final match between India and Australia

d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, Australia lost 7 wickets.

e. The team which scored the maximum runs wins.
f. If the scores are same the team which lost minimum wickets wins the match.
Represent the facts in predicate, convert to clause form and prove by resolution “India wins the

match”.

EXAMPLE 5

EXAMPLE 6 & EXAMPLE 7

Difference between Predicate Logic and Propositional Logic

KNOWLEDGE REPRESENTATION

ONTOLOGICAL ENGINEERING

Concepts such as Events, Time, Physical Objects, and Beliefs— that occur in many different domains.

Representing these abstract concepts is sometimes called ontological engineering.

The general framework of concepts is called an upper ontology because of the convention of drawing

graphs with the general concepts at the top and the more specific concepts below them, as in Figure

12.1.

Categories and Objects

The organization of objects into categories is a vital part of knowledge representation. Although

interaction with the world takes place at the level of individual objects, much reasoning takes place

at the level of categories. For example, a shopper would normally have the goal of buying a basketball,

rather than a particular basketball such as BB9

There are two choices for representing categories in first-order logic: predicates and objects.

That is, we can use the predicate Basketball (b), or we can reify1 the category as an object,

Basketballs. We could then say Member(b, Basketballs), which we will abbreviate as b∈

Basketballs, to say that b is a member of the category of basketballs. We say Subset(Basketballs,

Balls), abbreviated as Basketballs ⊂ Balls, to say that Basketballs is a subcategory of Balls.

Categories serve to organize and simplify the knowledge base through inheritance. If we say

that all instances of the category Food are edible, and if we assert that Fruit is a subclass of Food
and Apples is a subclass of Fruit , then we can infer that every apple is edible. We say that the

individual apples inherit the property of edibility, in this case from their membership in the Food
category.

First-order logic makes it easy to state facts about categories, either by relating objects to categories

or by quantifying over their members. Here are some types of facts, with examples of each:

• An object is a member of a category.

BB9 ∈ Basketballs

• A category is a subclass of another category.

Basketballs ⊂ Balls

• All members of a category have some properties.

(x∈ Basketballs) ⇒ Spherical (x)

• Members of a category can be recognized by some properties.

Orange(x) ∧ Round (x) ∧ Diameter(x)=9.5 ∧ x∈ Balls ⇒ x∈ Basketballs

• A category as a whole has some properties.

Dogs ∈DomesticatedSpecies
Notice that because Dogs is a category and is a member of DomesticatedSpecies , the latter must

be a category of categories.

Categories can also be defined by providing necessary and sufficient conditions for membership. For

example, a bachelor is an unmarried adult male:

x∈ Bachelors ⇔ Unmarried(x) ∧ x∈ Adults ∧ x∈Males

Physical Composition

We use the general PartOf relation to say that one thing is part of another. Objects can be grouped

into part of hierarchies, reminiscent of the Subset hierarchy:

PartOf (Bucharest , Romania)

PartOf (Romania, EasternEurope)

PartOf (EasternEurope, Europe)

PartOf (Europe, Earth)

The PartOf relation is transitive and reflexive; that is,

PartOf (x, y) ∧ PartOf (y, z) ⇒ PartOf (x, z)

PartOf (x, x)

Therefore, we can conclude PartOf (Bucharest , Earth).

For example, if the apples are Apple1, Apple2, and Apple3, then

BunchOf ({Apple1,Apple2,Apple3})

denotes the composite object with the three apples as parts (not elements).

We can define BunchOf in terms of the PartOf relation. Obviously, each element of s is part of

BunchOf (s):

∀x x∈ s ⇒ PartOf (x, BunchOf (s))

Furthermore, BunchOf (s) is the smallest object satisfying this condition. In other words, BunchOf

(s) must be part of any object that has all the elements of s as parts:

∀ y [∀x x∈ s ⇒ PartOf (x, y)] ⇒ PartOf (BunchOf (s), y)

Measurements

In both scientific and commonsense theories of the world, objects have height, mass, cost, and so on.

The values that we assign for these properties are called measures.

Length(L1)=Inches(1.5)=Centimeters(3.81)

Conversion between units is done by equating multiples of one unit to another:

Centimeters(2.54 ×d)=Inches(d)

Similar axioms can be written for pounds and kilograms, seconds and days, and dollars and cents.

Measures can be used to describe objects as follows:

Diameter (Basketball12)=Inches(9.5)

ListPrice(Basketball12)=$(19)

d∈ Days ⇒ Duration(d)=Hours(24)

Time Intervals

Event calculus opens us up to the possibility of talking about time, and time intervals. We will

consider two kinds of time intervals: moments and extended intervals. The distinction is that only

moments have zero duration:

Partition({Moments,ExtendedIntervals}, Intervals)

i∈Moments ⇔ Duration(i)=Seconds(0)

The functions Begin and End pick out the earliest and latest moments in an interval, and the function

Time delivers the point on the time scale for a moment. The function Duration gives the difference

between the end time and the start time.

Interval (i) ⇒ Duration(i)=(Time(End(i)) − Time(Begin(i)))

Time(Begin(AD1900))=Seconds(0)

Time(Begin(AD2001))=Seconds(3187324800)

Time(End(AD2001))=Seconds(3218860800)

Duration(AD2001)=Seconds(31536000)

Two intervals Meet if the end time of the first equals the start time of the second. The complete set

of interval relations, as proposed by Allen (1983), is shown graphically in Figure 12.2 and logically

below:

Meet(i,j) ⇔ End(i)=Begin(j)

Before(i,j) ⇔ End(i) < Begin(j)

After (j,i) ⇔ Before(i, j)

During(i,j) ⇔ Begin(j) < Begin(i) < End(i) < End(j)

Overlap(i,j) ⇔ Begin(i) < Begin(j) < End(i) < End(j)

Begins(i,j) ⇔ Begin(i) = Begin(j)

Finishes(i,j) ⇔ End(i) = End(j)

Equals(i,j) ⇔ Begin(i) = Begin(j) ∧ End(i) = End(j)

EVENTS

Event calculus reifies fluents and events. The fluent At(Shankar , Berkeley) is an object that refers

to the fact of Shankar being in Berkeley, but does not by itself say anything about whether it is true.

To assert that a fluent is actually true at some point in time we use the predicate T, as in T(At(Shankar

, Berkeley), t).

Events are described as instances of event categories. The event E1 of Shankar flying from San

Francisco to Washington, D.C. is described as

E1 ∈ Flyings ∧ Flyer (E1, Shankar) ∧ Origin(E1, SF) ∧ Destination(E1,DC)

we can define an alternative three-argument version of the category of flying events and say

E1 ∈ Flyings(Shankar , SF,DC)

We then use Happens(E1, i) to say that the event E1 took place over the time interval i, and we

say the same thing in functional form with Extent(E1)=i. We represent time intervals by a (start, end)

pair of times; that is, i = (t1, t2) is the time interval that starts at t1 and ends at t2. The complete

set of predicates for one version of the event calculus is

T(f, t) Fluent f is true at time t

Happens(e, i) Event e happens over the time interval i

Initiates(e, f, t) Event e causes fluent f to start to hold at time t

Terminates(e, f, t) Event e causes fluent f to cease to hold at time t

Clipped(f, i) Fluent f ceases to be true at some point during time interval i

Restored (f, i) Fluent f becomes true sometime during time interval i

We assume a distinguished event, Start , that describes the initial state by saying which fluents are

initiated or terminated at the start time. We define T by saying that a fluent holds at a point in time if

the fluent was initiated by an event at some time in the past and was not made false (clipped) by an

intervening event. A fluent does not hold if it was terminated by an event and not made true (restored)

by another event. Formally, the axioms are:

Happens(e, (t1, t2)) ∧ Initiates(e, f, t1) ∧ ￢Clipped(f, (t1, t)) ∧ t1 < t ⇒T(f, t)

Happens(e, (t1, t2)) ∧ Terminates(e, f, t1)∧ ￢Restored (f, (t1, t)) ∧ t1 < t ⇒￢T(f, t)

where Clipped and Restored are defined by

Clipped(f, (t1, t2)) ⇔ ∃ e, t, t3 Happens(e, (t, t3)) ∧ t1 ≤ t < t2 ∧ Terminates(e,

f, t)

Restored (f, (t1, t2)) ⇔ ∃ e, t, t3 Happens(e, (t, t3)) ∧ t1 ≤ t < t2 ∧ Initiates(e,

f, t)

MENTAL EVENTS AND MENTAL OBJECTS

What we need is a model of the mental objects that are in someone’s head (or something’s

knowledge base) and of the mental processes that manipulate those mental objects. The model does

not have to be detailed. We do not have to be able to predict how many milliseconds it will take for a

particular agent to make a deduction. We will be happy just to be able to conclude that mother knows

whether or not she is sitting.

We begin with the propositional attitudes that an agent can have toward mental objects:

attitudes such as Believes, Knows, Wants, Intends, and Informs. The difficulty is that these

attitudes do not behave like “normal” predicates. For example, suppose we try to assert that Lois

knows that Superman can fly:

Knows(Lois, CanFly(Superman))

One minor issue with this is that we normally think of CanFly(Superman) as a sentence, but here it

appears as a term. That issue can be patched up just be reifying CanFly(Superman); making it a

fluent. A more serious problem is that, if it is true that Superman is Clark Kent, then we must conclude

that Lois knows that Clark can fly:

(Superman = Clark) ∧ Knows(Lois , CanFly(Superman)) |= Knows(Lois, CanFly(Clark))

Modal logic is designed to address this problem. Regular logic is concerned with a single

modality, the modality of truth, allowing us to express “P is true.” Modal logic includes special modal

operators that take sentences (rather than terms) as arguments. For example, “A knows P” is

represented with the notation KAP, where K is the modal operator for knowledge. It takes two

arguments, an agent (written as the subscript) and a sentence. The syntax of modal logic is the same

as first-order logic, except that sentences can also be formed with modal operators.

In first-order logic a model contains a set of objects and an interpretation that maps each name

to the appropriate object, relation, or function. In modal logic we want to be able to consider both the

possibility that Superman’s secret identity is Clark and that it isn’t. Therefore, we will need a more

complicated model, one that consists of a collection of possible worlds rather than just one true world.

The worlds are connected in a graph by accessibility relations, one relation for each modal operator.

We say that world w1 is accessible from world w0 with respect to the modal operator KA if everything

in w1 is consistent with what A knows in w0, and we write this as Acc(KA,w0,w1). In diagrams such

as Figure 12.4 we show accessibility as an arrow between possible worlds.

In general, a knowledge atom KAP is true in world w if and only if P is true in every world

accessible from w. The truth of more complex sentences is derived by recursive application of this

rule and the normal rules of first-order logic. That means that modal logic can be used to reason about

nested knowledge sentences: what one agent knows about another agent’s knowledge. For example,

we can say that, even though Lois doesn’t know whether Superman’s secret identity is Clark Kent,

she does know that Clark knows:

KLois [KClark Identity(Superman, Clark) ∨ KClark￢Identity(Superman, Clark)]

Figure 12.4 shows some possible worlds for this domain, with accessibility relations for Lois

and Superman.

In the TOP-LEFT diagram, it is common knowledge that Superman knows his own identity,

and neither he nor Lois has seen the weather report. So in w0 the worlds w0 and w2 are accessible to

Superman; maybe rain is predicted, maybe not. For Lois all four worlds are accessible from each

other; she doesn’t know anything about the report or if Clark is Superman. But she does know that
Superman knows whether he is Clark, because in every world that is accessible to Lois, either

Superman knows I, or he knows ￢I. Lois does not know which is the case, but either way she knows

Superman knows.

In the TOP-RIGHT diagram it is common knowledge that Lois has seen the weather report.

So in w4 she knows rain is predicted and in w6 she knows rain is not predicted. Superman does not

know the report, but he knows that Lois knows, because in every world that is accessible to him,

either she knows R or she knows ￢R.
In the BOTTOM diagram we represent the scenario where it is common knowledge that

Superman knows his identity, and Lois might or might not have seen the weather report. We represent

this by combining the two top scenarios, and adding arrows to show that Superman does not know

which scenario actually holds. Lois does know, so we don’t need to add any arrows for her. In w0

Superman still knows I but not R, and now he does not know whether Lois knows R. From what

Superman knows, he might be in w0 or w2, in which case Lois does not know whether R is true, or

he could be in w4, in which case she knows R, or w6, in which case she knows ￢R.

REASONING SYSTEMS FOR CATEGORIES

This section describes systems specially designed for organizing and reasoning with categories. There

are two closely related families of systems: semantic networks provide graphical aids for visualizing

a knowledge base and efficient algorithms for inferring properties of an object on the basis of its

category membership; and description logics provide a formal language for constructing and

combining category definitions and efficient algorithms for deciding subset and superset relationships

between categories.

SEMANTIC NETWORKS

There are many variants of semantic networks, but all are capable of representing individual objects,

categories of objects, and relations among objects. A typical graphical notation displays object or

category names in ovals or boxes, and connects them with labeled links. For example, Figure 12.5

has a MemberOf link between Mary and FemalePersons , corresponding to the logical assertion

Mary ∈FemalePersons ; similarly, the SisterOf link between Mary and John corresponds to the

assertion SisterOf (Mary, John). We can connect categories using SubsetOf links, and so on.

We know that persons have female persons as mothers, so can we draw a HasMother link from

Persons to FemalePersons? The answer is no, because HasMother is a relation between a person

and his or her mother, and categories do not have mothers. For this reason, we have used a special

notation—the double-boxed link—in Figure 12.5. This link asserts that

∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈ FemalePersons]

We might also want to assert that persons have two legs—that is,

∀x x∈ Persons ⇒ Legs(x, 2)

The semantic network notation makes it convenient to perform inheritance reasoning . For example,

by virtue of being a person, Mary inherits the property of having two legs. Thus, to find out how

many legs Mary has, the inheritance algorithm follows the MemberOf link from Mary to the category

she belongs to, and then follows SubsetOf links up the hierarchy until it finds a category for which

there is a boxed Legs link—in this case, the Persons category.

Inheritance becomes complicated when an object can belong to more than one category or when a

category can be a subset of more than one other category; this is called multiple inheritance.

The drawback of semantic network notation, compared to first-order logic: the fact that links between

bubbles represent only binary relations. For example, the sentence Fly(Shankar , NewYork,

NewDelhi ,Yesterday) cannot be asserted directly in a semantic network. Nonetheless, we can

obtain the effect of n-ary assertions by reifying the proposition itself as an event belonging to an
appropriate event category. Figure 12.6 shows the semantic network structure for this particular event.

Notice that the restriction to binary relations forces the creation of a rich ontology of reified concepts.

One of the most important aspects of semantic networks is their ability to represent default values

for categories. Examining Figure 12.5 carefully, one notices that John has one leg, despite the fact

that he is a person and all persons have two legs. In a strictly logical KB, this would be a contradiction,

but in a semantic network, the assertion that all persons have two legs has only default status; that is,

a person is assumed to have two legs unless this is contradicted by more specific information.

	UNIT III- KNOWLEDGE REPRESENTATION
	UNIT III KNOWLEDGE REPRESENTATION
	FIRST ORDER PREDICATE LOGIC
	Syntax and Semantics of First Order Predicate Logic
	Symbols and interpretations
	Term
	Atomic sentences
	Complex Sentences
	Quantifiers
	Universal quantification (∀)
	Existential quantification (∃)
	Nested quantifiers
	Connections between ∀ and ∃
	Equality
	USING FIRST ORDER LOGIC
	The kinship domain
	The WUMPUS world
	SUBSTITUTION
	EXAMPLE
	UNIFICATION
	FORWARD CHAINING
	A simple Forward-Chaining Algorithm
	BACKWARD CHAINING
	A backward-chaining algorithm
	RESOLUTION
	Conjunctive normal form for first-order logic
	• Eliminate implications:
	• Distribute ∨ over ∧:
	EXAMPLE 1
	EXAMPLE 2
	EXAMPLE 3
	Solution:
	(vii) Convert to conjunct of disjuncts form.
	EXAMPLE 6 & EXAMPLE 7
	Categories and Objects
	Physical Composition
	Measurements
	Time Intervals
	EVENTS
	MENTAL EVENTS AND MENTAL OBJECTS
	REASONING SYSTEMS FOR CATEGORIES
	SEMANTIC NETWORKS

