
UNIT I  

Introduction to Machine Learning 
1. Introduction 
 
1.1 What Is Machine Learning?  

Machine learning is programming computers to optimize a performance criterion using example 
data or past experience. We have a model defined up to some parameters, and learning is the 
execution of a computer program to optimize the parameters of the model using the training data or 
past experience. The model may be predictive to make predictions in the future, or descriptive to gain 
knowledge from data, or both. 
Arthur Samuel, an early American leader in the field of computer gaming and artificial intelligence, 
coined the term “Machine Learning” in 1959 while at IBM. He defined machine learning as “the field of 
study that gives computers the ability to learn without being explicitly programmed.” However, there is 
no universally accepted definition for machine learning. Different authors define the term differently. 
 
Definition of learning 
Definition 

A computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P, if its performance at tasks T, as measured by P, improves with experience E. 

 
Examples 

i) Handwriting recognition learning problem 
• Task T: Recognising and classifying handwritten words within images 
• Performance P: Percent of words correctly classified 
• Training experience E: A dataset of handwritten words with given classifications 

ii) A robot driving learning problem 
• Task T: Driving on highways using vision sensors 
• Performance measure P: Average distance traveled before an error 
• training experience: A sequence of images and steering commands recorded while  
  observing a human driver 

iii) A chess learning problem 
• Task T: Playing chess 
• Performance measure P: Percent of games won against opponents 
• Training experience E: Playing practice games against itself 

Definition 
A computer program which learns from experience is called a machine learning program or 

simply a learning program. Such a program is sometimes also referred to as a learner. 
 
1.2 Components of Learning 

 Basic components of learning process 
The learning process, whether by a human or a machine, can be divided into four components, 

namely, data storage, abstraction, generalization and evaluation. Figure 1.1 illustrates the 
variouscomponents and the steps involved in the learning process. 
 



 
1. Data storage 

Facilities for storing and retrieving huge amounts of data are an important component of the 
learning process. Humans and computers alike utilize data storage as a foundation for advanced 
reasoning. 
• In a human being, the data is stored in the brain and data is retrieved using electrochemical    signals. 
• Computers use hard disk drives, flash memory, random access memory and similar devices    to store 
data and use cables and other technology to retrieve data. 
 
2. Abstraction 

The second component of the learning process is known as abstraction. 
Abstraction is the process of extracting knowledge about stored data. This involves creating general 
concepts about the data as a whole. The creation of knowledge involves application of known models 
and creation of new models. 
The process of fitting a model to a dataset is known as training. When the model has been trained, the 
data is transformed into an abstract form that summarizes the original information. 
 
3. Generalization 

The third component of the learning process is known as generalisation. 
The term generalization describes the process of turning the knowledge about stored data into a form 
that can be utilized for future action. These actions are to be carried out on tasks that are similar, but 
not identical, to those what have been seen before. In generalization, the goal is to discover those 
properties of the data that will be most relevant to future tasks. 
 
4. Evaluation 

Evaluation is the last component of the learning process. 
It is the process of giving feedback to the user to measure the utility of the learned knowledge. This 
feedback is then utilised to effect improvements in the whole learning process 
 
Applications of machine learning 

Application of machine learning methods to large databases is called data mining. In data 
mining, a large volume of data is processed to construct a simple model with valuable use, for example, 
having 
high predictive accuracy. 
 
The following is a list of some of the typical applications of machine learning. 

1. In retail business, machine learning is used to study consumer behaviour. 
2. In finance, banks analyze their past data to build models to use in credit applications, fraud 

detection, and the stock market. 
3. In manufacturing, learning models are used for optimization, control, and troubleshooting. 



4. In medicine, learning programs are used for medical diagnosis. 
5. In telecommunications, call patterns are analyzed for network optimization and maximizing the 

quality of service. 
6. In science, large amounts of data in physics, astronomy, and biology can only be analyzed fast 

enough by computers. The World Wide Web is huge; it is constantly growing and searching for 
relevant information cannot be done manually. 

7. In artificial intelligence, it is used to teach a system to learn and adapt to changes so that the 
system designer need not foresee and provide solutions for all possible situations.  

8. It is used to find solutions to many problems in vision, speech recognition, and robotics.  
9. Machine learning methods are applied in the design of computer-controlled vehicles to steer 

correctly when driving on a variety of roads. 
10. Machine learning methods have been used to develop programmes for playing games such as 

chess, backgammon and Go. 
 
1.3 Learning Models 

Machine learning is concerned with using the right features to build the right models that 
achieve the right tasks.  The basic idea of Learning models has divided into three categories. 
For a given problem, the collection of all possible outcomes represents the sample space or instance 
space. 
 

 Using a Logical expression. (Logical models) 
 Using the Geometry of the instance space. (Geometric models)  
 Using Probability to classify the instance space. (Probabilistic models) 
 Grouping and Grading 

 
1.3.1  Logical models 

Logical models use a logical expression to divide the instance space into segments and hence 
construct grouping models. A logical expression is an expression that returns a Boolean value, i.e., a 
True or False outcome. Once the data is grouped using a logical expression, the data is divided into 
homogeneous groupings for the problem we are trying to solve.  For example, for a classification 
problem, all the instances in the group belong to one class. 
 
There are mainly two kinds of logical models: Tree models and Rule models. 
 
Rule models consist of a collection of implications or IF-THEN rules. For tree-based models, the ‘if-part’ 
defines a segment and the ‘then-part’ defines the behaviour of the model for this segment. Rule models 
follow the same reasoning. 
 
Logical models and Concept learning 

To understand logical models further, we need to understand the idea of Concept Learning. 
Concept Learning involves learning logical expressions or concepts from examples. The idea of Concept 
Learning fits in well with the idea of Machine learning, i.e., inferring a general function from specific 
training examples. Concept learning forms the basis of both tree-based and rule-based models.  More 
formally, Concept Learning involves acquiring the definition of a general category from a given set of 
positive and negative training examples of the category. A Formal Definition for Concept Learning is 
“The inferring of a Boolean-valued function from training examples of its input and output.” In 
concept learning, we only learn a description for the positive class and label everything that doesn’t 
satisfy that description as negative. 
 



 
 
 
 
 
 
 
The following example explains this idea in more detail. 
 

 
 

A Concept Learning Task called “Enjoy Sport” as shown above is defined by a set of data from 
some example days. Each data is described by six attributes. The task is to learn to predict the value of 
Enjoy Sport for an arbitrary day based on the values of its attribute values. The problem can be 
represented by a series of hypotheses. Each hypothesis is described by a conjunction of constraints on 
the attributes. The training data represents a set of positive and negative examples of the target 
function. In the example above, each hypothesis is a vector of six constraints, specifying the values of 
the six attributes –  Sky, AirTemp, Humidity, Wind, Water, and Forecast. The training phase involves 
learning the set of days (as a conjunction of attributes) for which Enjoy Sport = yes. 
 
Thus, the problem can be formulated as: 
 

 Given instances X  which represent a set of all possible days, each described by the attributes: 
o Sky – (values: Sunny, Cloudy, Rainy), 
o AirTemp – (values: Warm, Cold), 
o Humidity – (values: Normal, High), 
o Wind – (values: Strong, Weak), 
o Water – (values: Warm, Cold), 
o Forecast – (values: Same, Change). 

 
Try to identify a function that can predict the target variable Enjoy Sport as yes/no, i.e., 1 or 0. 
 
1.3.2 Geometric models 

In the previous section, we have seen that with logical models, such as decision trees, a logical 
expression is used to partition the instance space. Two instances are similar when they end up in the 
same logical segment. In this section, we consider models that define similarity by considering the 
geometry of the instance space.  In Geometric models, features could be described as points in two 
dimensions (x- and y-axis) or a three-dimensional space (x, y, and z). Even when features are not 

https://web.cs.hacettepe.edu.tr/~ilyas/Courses/BIL712/lec01-conceptLearning.pdf


intrinsically geometric, they could be modelled in a geometric manner (for example, temperature as a 
function of time can be modelled in two axes). In geometric models, there are two ways we could 
impose similarity. 

 We could use geometric concepts like lines or planes to segment (classify) the instance space. 
These are called Linear models. 

 Alternatively, we can use the geometric notion of distance to represent similarity. In this case, if 
two points are close together, they have similar values for features and thus can be classed as 
similar. We call such models as Distance-based models. 

 
 
Linear models 

Linear models are relatively simple. In this case, the function is represented as a linear 
combination of its inputs. Thus, if x1 and x2 are two scalars or vectors of the same dimension 
and a and b are arbitrary scalars, then ax1 + bx2 represents a linear combination of x1 and x2. In the 
simplest case where f(x) represents a straight line, we have an equation of the form f (x) 
= mx + c where c represents the intercept and m represents the slope. 
 

 
Linear models are parametric, which means that they have a fixed form with a small number of numeric 
parameters that need to be learned from data. For example, in f (x) = mx + c, m and c are the 
parameters that we are trying to learn from the data. This technique is different from tree or rule 
models, where the structure of the model (e.g., which features to use in the tree, and where) is not 
fixed in advance. 
 
Linear models are stable, i.e., small variations in the training data have only a limited impact on the 
learned model. In contrast, tree models tend to vary more with the training data, as the choice of a 
different split at the root of the tree typically means that the rest of the tree is different as well.  As a 
result of having relatively few parameters, Linear models have low variance and high bias. This implies 
that Linear models are less likely to overfit the training data than some other models. However, they 
are more likely to underfit. For example, if we want to learn the boundaries between countries based 
on labelled data, then linear models are not likely to give a good approximation. 
 
Distance-based models 

Distance-based models are the second class of Geometric models. Like Linear models, distance-
based models are based on the geometry of data. As the name implies, distance-based models work on 
the concept of distance.  In the context of Machine learning, the concept of distance is not based on 
merely the physical distance between two points. Instead, we could think of the distance between two 
points considering the mode of transport between two points. Travelling between two cities by plane 

https://www.quora.com/Why-is-a-decision-tree-considered-a-non-parametric-model
https://www.quora.com/Why-is-a-decision-tree-considered-a-non-parametric-model
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covers less distance physically than by train because a plane is unrestricted. Similarly, in chess, the 
concept of distance depends on the piece used – for example, a Bishop can move diagonally.   Thus, 
depending on the entity and the mode of travel, the concept of distance can be experienced differently. 
The distance metrics commonly used are Euclidean, Minkowski, Manhattan, and Mahalanobis. 
 

 
Distance is applied through the concept of neighbours and exemplars. Neighbours are points in 
proximity with respect to the distance measure expressed through exemplars. Exemplars are 
either centroids that find a centre of mass according to a chosen distance metric or medoids that find 
the most centrally located data point. The most commonly used centroid is the arithmetic mean, which 
minimises squared Euclidean distance to all other points. 
 
Notes: 

 The centroid represents the geometric centre of a plane figure, i.e., the arithmetic mean 
position of all the points in the figure from the centroid point. This definition extends to any 
object in n-dimensional space: its centroid is the mean position of all the points. 

 Medoids are similar in concept to means or centroids. Medoids are most commonly used on 
data when a mean or centroid cannot be defined. They are used in contexts where the centroid 
is not representative of the dataset, such as in image data. 

 
Examples of distance-based models include the nearest-neighbour models, which use the training data 
as exemplars – for example, in classification. The K-means clustering algorithm also uses exemplars to 
create clusters of similar data points. 
 
1.3.3 Probabilistic models 

The third family of machine learning algorithms is the probabilistic models. We have seen 
before that the k-nearest neighbour algorithm uses the idea of distance (e.g., Euclidian distance) to 
classify entities, and logical models use a logical expression to partition the instance space. In this 
section, we see how the probabilistic models use the idea of probability to classify new entities. 
 
Probabilistic models see features and target variables as random variables. The process of modelling 
represents and manipulates the level of uncertainty with respect to these variables. There are two 
types of probabilistic models: Predictive and Generative. Predictive probability models use the idea of 
a conditional probability distribution P (Y |X) from which Y can be predicted from X.  Generative models 
estimate the joint distribution P (Y, X).  Once we know the joint distribution for the generative models, 
we can derive any conditional or marginal distribution involving the same variables. Thus, the 
generative model is capable of creating new data points and their labels, knowing the joint probability 
distribution. The joint distribution looks for a relationship between two variables. Once this relationship 
is inferred, it is possible to infer new data points. 
Naïve Bayes is an example of a probabilistic classifier. 
 
We can do this using the Bayes rule defined as 



 

 
 

The Naïve Bayes algorithm is based on the idea of Conditional Probability.  Conditional probability is 
based on finding the probability that something will happen, given that something else has already 
happened. The task of the algorithm then is to look at the evidence and to determine the likelihood of a 
specific class and assign a label accordingly to each entity. 
 
Some broad categories of models: 
Geometric models Probabilistic models Logical models 
E.g. K-nearest neighbors, linear 
regression, support vector 
machine, logistic regression, … 

Naïve Bayes, Gaussian process 
regression, conditional random 
field, … 

Decision tree, random forest, … 

 
1.3.4 Grouping and Grading 

Grading vs grouping is an orthogonal categorization to geometric-probabilistic-logical-compositional.  

 Grouping models break the instance space up into groups or segments and in each segment 
apply a very simple method (such as majority class). 

o E.g. decision tree, KNN. 

 Grading models form one global model over the instance space. 

o E.g. Linear classifiers – Neural networks 

1.4 Designing a Learning System 

For any learning system, we must be knowing the three elements — T (Task), P (Performance 
Measure), and E (Training Experience). At a high level, the process of learning system looks as below. 

 

The learning process starts with task T, performance measure P and training experience E and objective 

are to find an unknown target function. The target function is an exact knowledge to be learned from the 

training experience and its unknown. For example, in a case of credit approval, the learning system will 

have customer application records as experience and task would be to classify whether the given 

customer application is eligible for a loan. So in this case, the training examples can be represented as 



(x1,y1)(x2,y2)..(xn,yn) where X represents customer application details and y represents the status of 

credit approval. 

With these details, what is that exact knowledge to be learned from the training experience? 

So the target function to be learned in the credit approval learning system is a mapping function f:X →y. 

This function represents the exact knowledge defining the relationship between input variable X and 

output variable y.  

Design of a learning system 

Just now we looked into the learning process and also understood the goal of the learning. When we 

want to design a learning system that follows the learning process, we need to consider a few design 

choices. The design choices will be to decide the following key components: 

1. Type of training experience 

2. Choosing the Target Function 

3. Choosing a representation for the Target Function 

4. Choosing an approximation algorithm for the Target Function 

5. The final Design 

 

We will look into the game - checkers learning problem and apply the above design choices. For a 

checkers learning problem, the three elements will be, 

 

1. Task T: To play checkers 

2. Performance measure P: Total percent of the game won in the tournament. 

3. Training experience E: A set of games played against itself 
 

1.4.1 Type of training experience 

During the design of the checker's learning system, the type of training experience available for a 

learning system will have a significant effect on the success or failure of the learning. 

 

1. Direct or Indirect training experience — In the case of direct training experience, an individual board 

states and correct move for each board state are given. 

In case of indirect training experience, the move sequences for a game and the final result (win, loss 

or draw) are given for a number of games. How to assign credit or blame to individual moves is the 

credit assignment problem. 

2. Teacher or Not — Supervised — The training experience will be labeled, which means, all the board 

states will be labeled with the correct move. So the learning takes place in the presence of a 

supervisor or a teacher. 

Unsupervised — The training experience will be unlabeled, which means, all the board states will not 

have the moves. So the learner generates random games and plays against itself with no supervision 

or teacher involvement. 



Semi-supervised — Learner generates game states and asks the teacher for help in finding the 

correct move if the board state is confusing. 

3. Is the training experience good — Do the training examples represent the distribution of examples 

over which the final system performance will be measured? Performance is best when training 

examples and test examples are from the same/a similar distribution. 

 
The checker player learns by playing against oneself. Its experience is indirect. It may not encounter 
moves that are common in human expert play. Once the proper training experience is available, the next 
design step will be choosing the Target Function. 
 
1.4.2 Choosing the Target Function 

When you are playing the checkers game, at any moment of time, you make a decision on 

choosing the best move from different possibilities. You think and apply the learning that you have 

gained from the experience. Here the learning is, for a specific board, you move a checker such that your 

board state tends towards the winning situation. Now the same learning has to be defined in terms of 

the target function. 

 

Here there are 2 considerations — direct and indirect experience. 

 

 During the direct experience, the checkers learning system, it needs only to learn how to choose 

the best move among some large search space. We need to find a target function that will help 

us choose the best move among alternatives. Let us call this function ChooseMove and use the 

notation ChooseMove : B →M to indicate that this function accepts as input any board from the 

set of legal board states B and produces as output some move from the set of legal moves M. 

 When there is an indirect experience, it becomes difficult to learn such function. How about 

assigning a real score to the board state.  

 

So the function be V : B →R indicating that this accepts as input any board from the set of legal board 

states B and produces an output a real score. This function assigns the higher scores to better board 

states. 
 

 

If the system can successfully learn such a target function V, then it can easily use it to select the best 

move from any board position. 



Let us therefore define the target value V(b) for an arbitrary board state b in B, as follows: 

1. if b is a final board state that is won, then V(b) = 100 

2. if b is a final board state that is lost, then V(b) = -100 

3. if b is a final board state that is drawn, then V(b) = 0 

4. if b is a not a final state in the game, then V (b) = V (b’), where b’ is the best final board state that can 

be achieved starting from b and playing optimally until the end of the game. 
 

The (4) is a recursive definition and to determine the value of V(b) for a particular board state, it 

performs the search ahead for the optimal line of play, all the way to the end of the game. So this 

definition is not efficiently computable by our checkers playing program, we say that it is a 

nonoperational definition. 

 

The goal of learning, in this case, is to discover an operational description of V ; that is, a description 

that can be used by the checkers-playing program to evaluate states and select moves within realistic 

time bounds. 

It may be very difficult in general to learn such an operational form of V perfectly. We expect learning 

algorithms to acquire only some approximation to the target function ^V. 

 
1.4.3 Choosing a representation for the Target Function 

Now that we have specified the ideal target function V, we must choose a representation that 
the learning program will use to describe the function ^V that it will learn. As with earlier design 
choices, we again have many options. We could, for example, allow the program to represent using a 
large table with a distinct entry specifying the value for each distinct board state. Or we could allow it to 
represent using a collection of rules that match against features of the board state, or a quadratic 
polynomial function of predefined board features, or an artificial 
neural network. In general, this choice of representation involves a crucial tradeoff. On one hand, we 
wish to pick a very expressive representation to allow representing as close an approximation as 
possible to the ideal target function V.  

 
On the other hand, the more expressive the representation, the more training data the program 

will require in order to choose among the alternative hypotheses it can represent. To keep the 
discussion brief, let us choose a simple representation:  
for any given board state, the function ^V will be calculated as a linear combination of the following 
board features: 
 x1(b) — number of black pieces on board b 

 x2(b) — number of red pieces on b 

 x3(b) — number of black kings on b 

 x4(b) — number of red kings on b 

 x5(b) — number of red pieces threatened by black (i.e., which can be taken on black’s next turn) 

 x6(b) — number of black pieces threatened by red 

 
^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · x5(b) + w6 · x6(b) 
 

Where w0 through w6 are numerical coefficients or weights to be obtained by a learning algorithm.  
Weights w1 to w6 will determine the relative importance of different board features. 
 



Specification of the Machine Learning Problem at this time — Till now we worked on choosing the type 
of training experience, choosing the target function and its representation. The checkers learning task 
can be summarized as below. 
 Task T : Play Checkers 

 Performance Measure : % of games won in world tournament 

 Training Experience E : opportunity to play against itself 

 Target Function : V : Board → R 

 Target Function Representation : ^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · 

x5(b) + w6 · x6(b) 

The first three items above correspond to the specification of the learning task,whereas the final two 
items constitute design choices for the implementation of the learning program. 
 
1.4.4 Choosing an approximation algorithm for the Target Function 
Generating training data — 

To train our learning program, we need a set of training data, each describing a specific board state b and 

the training value V_train (b) for b. Each training example is an ordered pair <b,V_train(b)> 

For example, a training example may be <(x1 = 3, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0), +100">. This is an 

example where black has won the game since x2 = 0 or red has no remaining pieces. However, such clean 

values of V_train (b) can be obtained only for board value b that are clear win, loss or draw. 

In above case, assigning a training value V_train(b) for the specific boards b that are clean win, loss or 

draw is direct as they are direct training experience. But in the case of indirect training experience, 

assigning a training value V_train(b) for the intermediate boards is difficult. In such case, the training 

values are updated using temporal difference learning. Temporal difference (TD) learning is a concept 

central to reinforcement learning, in which learning happens through the iterative correction of your 

estimated returns towards a more accurate target return. 

Let Successor(b) denotes the next board state following b for which it is again the program’s turn to 

move. ^V is the learner’s current approximation to V. Using these information, assign the training value 

of V_train(b) for any intermediate board state b as below :  

V_train(b) ← ^V(Successor(b)) 

 
Adjusting the weights 

Now its time to define the learning algorithm for choosing the weights and best fit the set of 

training examples. One common approach is to define the best hypothesis as that which minimizes the 

squared error E between the training values and the values predicted by the hypothesis ^V. 

 
 

The learning algorithm should incrementally refine weights as more training examples become available 

and it needs to be robust to errors in training data Least Mean Square (LMS) training rule is the one 

training algorithm that will adjust weights a small amount in the direction that reduces the error. 

 

The LMS algorithm is defined as follows: 

 



 
 

1.4.5 Final Design for Checkers Learning system 
The final design of our checkers learning system can be naturally described by four distinct 

program modules that represent the central components in many learning systems. 
1. The performance System — Takes a new board as input and outputs a trace of the game it played 

against itself. 

2. The Critic — Takes the trace of a game as an input and outputs a set of training examples of the 

target function. 

3. The Generalizer — Takes training examples as input and outputs a hypothesis that estimates the 

target function. Good generalization to new cases is crucial. 

4. The Experiment Generator — Takes the current hypothesis (currently learned function) as input and 

outputs a new problem (an initial board state) for the performance system to explore. 

 

 
Final design of the checkers learning program. 

 

1.5 Types of Learning 
In general, machine learning algorithms can be classified into three types. 

 Supervised learning 

 Unsupervised learning 

 Reinforcement learning 

 
1.5.1 Supervised learning 

A training set of examples with the correct responses (targets) is provided and, based on this 
training set, the algorithm generalises to respond correctly to all possible inputs. This is also called 
learning from exemplars. Supervised learning is the machine learning task of learning a function that 
maps an input to an output based on example input-output pairs. 
 

In supervised learning, each example in the training set is a pair consisting of an input object 
(typically a vector) and an output value. A supervised learning algorithm analyzes the training data and 
produces a function, which can be used for mapping new examples. In the optimal case, the function 
will correctly determine the class labels for unseen instances. Both classification and regression 



problems are supervised learning problems. A wide range of supervised learning algorithms are 
available, each with its strengths and weaknesses. There is no single learning algorithm that works best 
on all supervised learning problems. 
 

 
Figure 1.4: Supervised learning 

 
 
 

Remarks 
A “supervised learning” is so called because the process of an algorithm learning from the 

training dataset can be thought of as a teacher supervising the learning process. We know the correct 
answers (that is, the correct outputs), the algorithm iteratively makes predictions on the training data 
and is corrected by the teacher. Learning stops when the algorithm achieves an acceptable level of 
performance. 
 
Example 

Consider the following data regarding patients entering a clinic. The data consists of the gender 
and age of the patients and each patient is labeled as “healthy” or “sick”. 
 

 
 

1.5.2 Unsupervised learning 
Correct responses are not provided, but instead the algorithm tries to identify similarities 

between the inputs so that inputs that have something in common are categorised together. The 
statistical approach to unsupervised learning is 
known as density estimation. 
 

Unsupervised learning is a type of machine learning algorithm used to draw inferences from 
datasets consisting of input data without labeled responses. In unsupervised learning algorithms, a 
classification or categorization is not included in the observations. There are no output values and so 
there is no estimation of functions. Since the examples given to the learner are unlabeled, the accuracy 
of the structure that is output by the algorithm cannot be evaluated. The most common unsupervised 
learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns 



or grouping in data. 
 
Example 

Consider the following data regarding patients entering a clinic. The data consists of the gender 
and age of the patients. 

 
Based on this data, can we infer anything regarding the patients entering the clinic? 
 
1.5.3 Reinforcement learning 

This is somewhere between supervised and unsupervised learning. The algorithm gets told 
when the answer is wrong, but does not get told how to correct it. It has to explore and try out different 
possibilities until it works out how to get the answer right. Reinforcement learning is sometime called 
learning with a critic because of this monitor that scores the answer, but does not suggest 
improvements. 
 

Reinforcement learning is the problem of getting an agent to act in the world so as to maximize 
its rewards. A learner (the program) is not told what actions to take as in most forms of machine 
learning, but instead must discover which actions yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect not only the immediate reward but also the next 
situations and, through that, all subsequent rewards. 
 
Example 

Consider teaching a dog a new trick: we cannot tell it what to do, but we can reward/punish it if 
it does the right/wrong thing. It has to find out what it did that made it get the reward/punishment. We 
can use a similar method to train computers to do many tasks, such as playing backgammon or chess, 
scheduling jobs, and controlling robot limbs. Reinforcement learning is different from supervised 
learning. Supervised learning is learning from examples provided by a knowledgeable expert. 

 
1.6 PERSPECTIVES AND ISSUES IN MACHINE LEARNING 
 
Perspectives in Machine Learning 

One useful perspective on machine learning is that it involves searching a very large space of 
possible hypotheses to determine one that best fits the observed data and any prior knowledge held by 
the learner. 
For example, consider the space of hypotheses that could in principle be output by the above checkers 
learner. This hypothesis space consists of all evaluation functions that can be represented by some 
choice of values for the weights wo through w6. The learner's task is thus to search through this vast 
space to locate the hypothesis that is most consistent with the available training examples. The LMS 
algorithm for fitting weights achieves this goal by iteratively tuning the weights, adding a correction to 
each weight each time the hypothesized evaluation function predicts a value that differs from the 
training value. This algorithm works well when the hypothesis representation considered by the learner 
defines a continuously parameterized space of potential hypotheses. 
 



nderlying representation (e.g., linear functions, logical descriptions, decision trees, artificial 
neural networks). These different hypothesis representations are appropriate for learning different 
kinds of target functions. For each of these hypothesis representations, the corresponding learning 
algorithm takes advantage of a different underlying structure to organize the search through the 
hypothesis space.  
 

Throughout this book we will return to this perspective of learning as a search problem in order 
to characterize learning methods by their search strategies and by the underlying structure of the 
search spaces they explore. We will also find this viewpoint useful in formally analyzing the relationship 
between the size of the hypothesis space to be searched, the number of training examples available, 
and the confidence we can have that a hypothesis consistent with the training data will correctly 
generalize to unseen examples. 
 
Issues in Machine Learning 
Our checkers example raises a number of generic questions about machine learning. The field of 
machine learning, and much of this book, is concerned with answering questions such as the following: 
 

 What algorithms exist for learning general target functions from specific training examples? In 

what settings will particular algorithms converge to the desired function, given sufficient 

training data? Which algorithms perform best for which types of problems and representations? 

 How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character of the 

learner's hypothesis space? 

 When and how can prior knowledge held by the learner guide the process of generalizing from 

examples? Can prior knowledge be helpful even when it is only approximately correct? 

 What is the best strategy for choosing a useful next training experience, and how does the 

choice of this strategy alter the complexity of the learning problem?  

 What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? Can 

this process itself be automated?  

 How can the learner automatically alter its representation to improve its ability to represent 

and learn the target function? 

 
1.7 Version Spaces 

Definition (Version space). A concept is complete if it covers all positive examples. 
 
A concept is consistent if it covers none of the negative examples. The version space is the set of all 
complete and consistent concepts. This set is convex and is fully defined by its least and most general 
elements. 
 
The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the set of all 
hypotheses consistent with the training examples 
 
1.7.1 Representation 
The Candidate – Elimination  algorithm finds all describable hypotheses that are consistent with the 
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observed training examples. In order to define this algorithm precisely, we begin with a few basic 
definitions. First, let us say that a hypothesis is consistent with the training examples if it correctly 
classifies these examples. 
 
Definition: A hypothesis h is consistent with a set of training examples D if and only if h(x) = c(x) for 
each example (x, c(x)) in D. 
 

 
 
Note difference between definitions of consistent and satisfies  

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive 

or negative example of the target concept.  

 An example x is said to consistent with hypothesis h iff h(x) = c(x)  

 
Definition: version space- The version space, denoted V SH, D with respect to hypothesis space H and 
training examples D, is the subset of hypotheses from H consistent with the training examples in D 
 

 
 
1.7.2 The LIST-THEN-ELIMINATION algorithm  

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain all hypotheses in H 
and then eliminates any hypothesis found inconsistent with any training example. 

 
1. VersionSpace c a list containing every hypothesis in H  
2. For each training example, (x, c(x)) remove from VersionSpace any hypothesis h for which h(x) ≠ c(x)  

3. Output the list of hypotheses in VersionSpace 

 

 List-Then-Eliminate works in principle, so long as version space is finite. 

 However, since it requires exhaustive enumeration of all hypotheses in practice it is not feasible.  

 

A More Compact Representation for Version Spaces 

The version space is represented by its most general and least general members. These members form general 

and specific boundary sets that delimit the version space within the partially ordered hypothesis space.  

Definition: The general boundary G, with respect to hypothesis space H and training data D, is the set of 

maximally general members of H consistent with D 

 
G {g  H | Consistent (g, D)(g'  H)[(g'  g)  Consistent(g', D)]} 

g 

 
Definition: The specific boundary S, with respect to hypothesis space H and training data D, is the set of 

minimally general (i.e., maximally specific) members of H consistent with D. 

 
S {s  H | Consistent (s, D)(s'  H)[(s  s')  Consistent(s', D)]} 

g 

 

Theorem: Version Space representation theorem  

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-valued hypotheses defined over X. 

Let c: X →{O, 1} be an arbitrary target concept defined over X, and let D be an arbitrary set of training examples 



{(x, c(x))). For all X, H, c, and D such that S and G are well defined, 

 

VS ={ h  H | (s  S ) (g  G ) ( g  h  s )} 
H,D g g 

 

To Prove: 

1. Every h satisfying the right hand side of the above expression is in VS 
                                                                                                                                            H, D 

2. Every member of VS satisfies the right-hand side of the expression 
                                         H, D 

 

Sketch of proof: 

1. let g, h, s be arbitrary members of G, H, S respectively with g 
g 

h 
g 

s 

 By the definition of S, s must be satisfied by all positive examples in D. Because h 
g 

s, 

h must also be satisfied by all positive examples in D. 

 By the definition of G, g cannot be satisfied by any negative example in D, and because g 
g 

h 

h cannot be satisfied by any negative example in D. Because h is satisfied by all positive 

examples in D and by no negative examples in D, h is consistent with D, and therefore h is a 

member of VSH,D. 

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side of 

the expression, then showing that this leads to an inconsistency 

1.7.3 CANDIDATE-ELIMINATION Learning Algorithm 

 

The CANDIDATE-ELIMINTION algorithm computes the version space containing all hypotheses 
from H that are consistent with an observed sequence of training examples. 

 
Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific 
hypotheses in H For each training example d, do 

• If d is a positive example 

• Remove from G any hypothesis inconsistent with d 

• For each hypothesis s in S that is not consistent with d 

• Remove s from S 

• Add to S all minimal generalizations h of s such that 

• h is consistent with d, and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 
 

• If d is a negative example 

• Remove from S any hypothesis inconsistent with d 

• For each hypothesis g in G that is not consistent with d 

• Remove g from G 



• Add to G all minimal specializations h of g such that 

• h is consistent with d, and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 

CANDIDATE- ELIMINTION algorithm using version spaces 
 

1.7.4 An Illustrative Example 

 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all 

hypotheses in H; 

 
Initializing the G boundary set to contain the most general hypothesis in H 

G0  ?,  ?,  ?,  ?,  ?, ? 

 
Initializing the S boundary set to contain the most specific (least general) hypothesis 

S0  , , , , ,  
 

 When the first training example is presented, the CANDIDATE-ELIMINTION algorithm checks the 

S boundary and finds that it is overly specific and it fails to cover the positive example. 

 The boundary is therefore revised by moving it to the least more general hypothesis that covers 
this new example 

 No update of the G boundary is needed in response to this training example because Go 
correctly covers this example 
 

 
 

 

 When the second training example is observed, it has a similar effect of generalizing S further to S2, 

leaving G again unchanged i.e., G2 = G1 = G0 

 



 

 
 

 Consider the third training example. This negative example reveals that the G boundary of 

the version space is overly general, that is, the hypothesis in G incorrectly predicts that this 

new example is a positive example. 

 The hypothesis in the G boundary must therefore be specialized until it correctly classifies 

this new negative example. 
 

 
 

Given that there are six attributes that could be specified to specialize G2, why are there only three 

new hypotheses in G3? 
For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 that 

correctly labels the new example as a negative example, but it is not included in G3. The 
reason this hypothesis is excluded is that it is inconsistent with the previously encountered 
positive examples 

 
Consider the fourth training example. 
 



 
 

 

 This positive example further generalizes the S boundary of the version space. It also 

results in removing one member of the G boundary, because this member fails to cover 

the new positive example 

 
After processing these four examples, the boundary sets S4 and G4 delimit the version space of all 

hypotheses consistent with the set of incrementally observed training examples. 
 
 

 
 

 

1.8 Probably approximately correct learning 
 

In computer science, computational learning theory (or just learning theory) is a subfield of 
artificial intelligence devoted to studying the design and analysis of machine learning algorithms. In 
computational learning theory, probably approximately correct learning (PAC learning) is a framework 
for mathematical analysis of machine learning algorithms. It was proposed in 1984 by Leslie Valiant. 
 

In this framework, the learner (that is, the algorithm) receives samples and must select a 
hypothesis from a certain class of hypotheses. The goal is that, with high probability (the “probably” 
part), the selected hypothesis will have low generalization error (the “approximately correct” part). In 
this section we first give an informal definition of PAC-learnability. After introducing a few nore notions, 
we give a more formal, mathematically oriented, definition of PAC-learnability. At the end, we mention 
one of the applications of PAC-learnability. 
 
PAC-learnability 
To define PAC-learnability we require some specific terminology and related notations. 



 Let X be a set called the instance space which may be finite or infinite. For example, X may be 

the set of all points in a plane. 

 A concept class C for X is a family of functions c : X  {0; 1}. A member of C is called a concept. 

A concept can also be thought of as a subset of X. If C is a subset of X, it defines a unique 

function µc : X  {0; 1} as follows: 

 

 
 

 A hypothesis h is also a function h : X  {0; 1}. So, as in the case of concepts, a hypothesis can 

also be thought of as a subset of X. H will denote a set of hypotheses. 

 We assume that F is an arbitrary, but fixed, probability distribution over X. 

 Training examples are obtained by taking random samples from X. We assume that the samples 

are randomly generated from X according to the probability distribution F. 

 
Now, we give below an informal definition of PAC-learnability. 
 
Definition (informal) 
Let X be an instance space, C a concept class for X, h a hypothesis in C and F an arbitrary, but fixed, 
probability distribution. The concept class C is said to be PAC-learnable if there is an algorithm A which, 
for samples drawn with any probability distribution F and any concept c Є C, will with high probability 
produce a hypothesis h Є C whose error is small. 
 
Examples 
 

To illustrate the definition of PAC-learnability, let us consider some concrete examples. 

 

 
Figure : An axis-aligned rectangle in the Euclidean plane 

 

Example  



 Let the instance space be the set X of all points in the Euclidean plane. Each point is represented 

by its coordinates (x; y). So, the dimension or length of the instances is 2.  

 Let the concept class C be the set of all “axis-aligned rectangles” in the plane; that is, the set of 

all rectangles whose sides are parallel to the coordinate axes in the plane (see Figure).  

 Since an axis-aligned rectangle can be defined by a set of inequalities of the following form 

having four parameters 

 
a ≤ x ≤ b,    c ≤ y ≤ d 

 
the size of a concept is 4. 

 We take the set H of all hypotheses to be equal to the set C of concepts, H = C. 

 
Given a set of sample points labeled positive or negative, let L be the algorithm which outputs the 
hypothesis defined by the axis-aligned rectangle which gives the tightest fit to the positive examples 
(that is, that rectangle with the smallest area that includes all of the positive examples and none of the 
negative examples) (see Figure bleow). 
 

 
Figure : Axis-aligned rectangle which gives the tightest fit to the positive examples 

 

It can be shown that, in the notations introduced above, the concept class C is PAC-learnable by the 
algorithm L using the hypothesis space H of all axis-aligned rectangles. 
 
1.9 Vapnik-Chervonenkis (VC) dimension 

The concepts of Vapnik-Chervonenkis dimension (VC dimension) and probably approximate 
correct (PAC) learning are two important concepts in the mathematical theory of learnability and hence 
are mathematically oriented. The former is a measure of the capacity (complexity, expressive power, 
richness, or flexibility) of a space of functions that can be learned by a classification algorithm. It was 
originally defined by Vladimir Vapnik and Alexey Chervonenkis in 1971. The latter is a framework for the 
mathematical analysis of learning algorithms. The goal is to check whether the probability for a selected 
hypothesis to be approximately correct is very high. The notion of PAC 
learning was proposed by Leslie Valiant in 1984. 
 
V-C dimension 
Let H be the hypothesis space for some machine learning problem. The Vapnik-Chervonenkis dimension 
of H, also called the VC dimension of H, and denoted by V C(H), is a measure of the complexity (or, 
capacity, expressive power, richness, or flexibility) of the space H. To define the VC dimension we 
require the notion of the shattering of a set of instances. 



 
Shattering of a set 
Let D be a dataset containing N examples for a binary classification problem with class labels 0 and 1. 
Let H be a hypothesis space for the problem. Each hypothesis h in H partitions D into two disjoint 
subsets as follows: 
 

 
Such a partition of S is called a “dichotomy” in D. It can be shown that there are 2N possible dichotomies 
in D. To each dichotomy of D there is a unique assignment of the labels “1” and “0” to the elements of 
D. Conversely, if S is any subset of D then, S defines a unique hypothesis h as follows: 
 

 
Thus to specify a hypothesis h, we need only specify the set {x Є D |  h(x) = 1}. Figure 3.1 shows all 
possible dichotomies of D if D has three elements. In the figure, we have shown only one of the two sets 
in a dichotomy, namely the set {x Є D |  h(x) = 1}.The circles and ellipses represent such sets. 
 

 
 

 

Definition 
A set of examples D is said to be shattered by a hypothesis space H if and only if for every dichotomy of 
D there exists some hypothesis in H consistent with the dichotomy of D. 
 
The following example illustrates the concept of Vapnik-Chervonenkis dimension. 
 
Example 
 
In figure , we see that an axis-aligned rectangle can shatter four points in two dimensions. Then  VC(H), 
when H is the hypothesis class of axis-aligned rectangles in two dimensions, is four. In calculating the VC 
dimension, it is enough that we find four points that can be shattered; it is not necessary that we be 
able to shatter any four points in two dimensions. 
 



 
Fig: An axis-aligned rectangle can shattered four points. Only rectangle covering two points are shown. 
 
VC dimension may seem pessimistic. It tells us that using a rectangle as our hypothesis class, we can 
learn only datasets containing four points and not more. 
 
 
 
 
 
 
 


