
 1

GE8151- PROBLEM SOLVING AND PYTHON PROGRAMMING

UNIT II- DATA, EXPRESSIONS, STATEMENTS

Interactive mode and script mode

 Python has two basic modes: interactive and script mode

Interactive mode:

 Interactive mode is a command line shell which gives immediate feedback

for each statement, while running previously fed statements in active

memory.

Example Output

>>>x = 5

>>>x + 1

6

Script mode

 Script mode is the normal mode where the scripted and finished .py files are

run in the Python interpreter.

Example Output

x=5

x=x+1

print(x)

6

 2

Comments

 Comments are the non-executable statements explain what the program does.

 Python supports two types of comments:

1) Single lined comment:

 User wants to specify a single line comment, then comment must start with #

 Example:

 2) Multi lined Comment:

 Multi lined comment can be given inside triple quotes(' ' ').

 Example:

This is single line comment

''' This

 Is

 Multipline comment'''

 3

Python Input and Output Statements

Python Input Statements

 Python provides two built-in functions to read a line of text from standard

input device, keyboard.

 These function are:

 1. input()

 Interprets and evaluates the input ie., if user enters integer input, an integer

will be returned.

 2. raw_input()

 raw_input() takes exactly what user typed and passes it back as string.

 It doesn’t interpret the user input. Even an integer value of 10 is of string only.

Python Output Statements

 print() function is used to output data to the standard output device(screen).

 print statement is used where zero or more expressions are passed separated

by commas.

Example Program Output

n= input("enter the number")

print("simple input statement=",n+10)

n=raw_input("enter the number")

print("simple raw_input statement=",n+10)

enter the number

 5

simple input statement= 15

enter the number

 5

"simple raw_input statement",n+10

 4

Expressions

Definition:

 An expression is a combination of values, variables, and operators.

 A value and a variable, itself considered as an expression

Example:

17 #expression

x #expression

x + 17 #expression

Statements

Definition:

 A statement is a unit of code that the Python interpreter can execute.

 We have seen two kinds of statement: print and assignment.

 Python allows the use of line continuation character (\) to denote that the line

should continue.

 Example:

Total = mark1+\

 mark2+\

 mark3

 Technically an expression is also a statement, but it is probably simpler to think

of them as different things.

 The important difference is that an expression has a value; a statement does not.

 5

Variables

Definition:

 Variable is an identifiers that refer to a values.

 Variable is a name of the memory location where data is stored.

 Once a variable is stored that means a space is allocated in memory.

 Example:

a=10

 pi=3.14

 name=’cse’

 Where a, pi and name are Variables

 10, 3.14 and cse are Values

Assigning values to Variable:

 When we assign any value to the variable that variable is declared automatically.

 The assignment is done using the equal (=) operator.

Multiple Assignments:

 Multiple assignments can be done in Python at a time.

 There are two ways to assign values in Python:

1. Assigning single value to multiple variables:

 2. Assigning multiple values to multiple variables:

Example: Output:

x=y=z=50

print x

print y

print z

50

50

50

Example: Output:

a,b,c=5,10,15

print a

print b

print c

1. 5

2. 10

3. 15

 6

Tokens

Definition:

 Token is the smallest unit inside the given program.

 Tokens can be defined as a punctuator mark, reserved words and each individual

word in a statement.

 There are following tokens in Python:

 Keywords

 Identifiers

 Literals

 Operators

Keywords

 Keywords are special reserved words which convey a special meaning to the

compiler/interpreter.

 Each keyword have a special meaning and a specific operation.

 List of Keywords used in Python are:

True False None and as

asset def class continue break

else finally elif del except

global for if from import

raise try or return pass

nonlocal in not is lambda

 7

Identifiers

 Identifiers are the names given to the fundamental building blocks in a program.

 These can be variables, class, object, functions, lists, dictionaries etc.

 There are certain rules defined for naming i.e., Identifiers.

1. An identifier is a long sequence of characters and numbers.

2. Keyword should not be used as an identifier name.

3. Python is case sensitive. So using case is significant.

4. First character of an identifier can be character, underscore (_) but not digit.

 8

Literals (Values and Types)

 Literals can be defined as a data that is given in a variable or constant.

 A value is one of the basic things a program works with, like a letter or a number

 Python support the following literals or standard data types

a) Numbers

b) String

c) Boolean True and False

d) List [] – empty list

e) Tuple () – empty tuple

f) Dictionary { } – empty dictionary

a) Numeric (Number data types) literals

 Definition

 Numeric Literals are immutable.

 Numeric literals can belong to following four different numerical types.

Numerical Data types Description Example

int Signed integers 100

long Long integers ox1234 and 5678L

float Floating point 3.14

complex Complex number 5+78j

 9

b) String literals

 Definition

 Strings are the group (sequence or collection) of characters, digits, and symbols

enclosed within quotation marks (‘ or “) .

 Example:

 "cse" , 'mech', '12345'

 Types of Strings:

 There are two types of Strings supported in Python:

a) Single line String Strings that are terminated within a single line are known as

Single line Strings.

 Example:

 text1='hello'

b) Multi line String A piece of text that is spread along multiple lines is known as

Multiple line String.

 There are two ways to create Multiline Strings:

 1) Adding back slash at the end of each line:

 2) Using triple quotation marks:

 Example: Output

>>> str2= """welcome

to

first

year

students"""

>>> print (str2)

welcome

to

first

year

students

Example: Output

str1='cse\

mech'
>>> print (str1)

 csemech

 10

c) Boolean literals

 Boolean is one more data type supported in python.

 It takes the two values: True or False.

 Example:

 print True # True is a Boolean value.

print False # False is a Boolean value.

d) List

o List contains items of different data types. Lists are mutable i.e., modifiable.

o The values stored in List are separated by commas(,) and enclosed within a

square brackets([]). We can store different type of data in a List.

o Value stored in a List can be retrieved using the slice operator([] and [:]).

o The plus sign (+) is the list concatenation and asterisk(*) is the repetition

operator.

Example Output

>>> list1=[10,30,50,70,90]

>>> list2=[20,40,60,80,100]

 >>> list1

[10, 30, 50, 70, 90]

>>>list2

[20, 40, 60, 80, 100]

>>>list1[0:3]

 [10, 30, 50]

>>> list1[3:]

 [70, 90]

>>> list1+list2

[10, 30, 50, 70, 90, 20, 40, 60, 80, 100]

>>> list1*2

[10, 30, 50, 70, 90, 10, 30, 50, 70, 90]

 11

 e) Tuples

 Tuple is another form of collection where different type of data can be stored.

 It is similar to list where data is separated by commas.

 The main difference between is lists and tuples are:

 Lists are enclosed in square bracket([]) and their elements and size can

be changed,

 Tuples are enclosed in parenthesis (()) and their elements and size

cannot be changed.

Example Output

>>> tuple1=('cse',10,20.5,'mech')
>>> tuple1

 ('cse', 10, 20.5, 'mech')

>>> tuple2=('eee',30)
>>> tuple2

 ('eee', 30)

>>> tuple1+tuple2

 ('cse', 10, 20.5, 'mech', 'eee', 30)

>>>tuple2[0]

 'eee'

>>>tuple1[2:]

 (20.5, 'mech')

>>> tuple1[:2]

 ('cse', 10)

 12

f) Dictionary

o Dictionary is a collection which works on a key-value pair.

o It works like an associated array where no two keys can be same.

o Dictionaries are enclosed by curly braces ({}) and values and keys can be

retrieved by square bracket ([]).

Example:

1. >>> dictionary={'name':'raja','rollno':100,'dept':'cse'}

2.

3.

>>> dictionary

 {'rollno': 100, 'dept': 'cse', 'name': 'raja'}

4.

>>> dictionary.keys()

5. ['rollno', 'dept', 'name']

6.

>>> dictionary.values()

 [100, 'cse', 'raja']

 13

Operators

Definition:

 An operator is a symbol that specifies an operation to be performed on the

operands.

 The values are known as Operands.

 An Operands is data item.

 Example: 1

 a+b

 Where ‘+’ is operator and ‘a’,’b’ are the operands.

 Example: 2

 4 + 5 = 9

Here 4 and 5 are Operands and (+) , (=) signs are the operators.

They produce the output 9.

Types of Operators:

1. Arithmetic Operators.

2. Relational Operators.

3. Assignment Operators.

4. Logical Operators.

5. Membership Operators.

6. Identity Operators.

7. Bitwise Operators.

 14

1. Arithmetic Operators:

Operators Description Example

+ Addition 10 + 5 = 15

- Subtraction
10 – 5 = 5

* Multiplication
10 * 5 = 50

/ Division
10 / 5 = 2.0

// Floor division
10 // 5 = 2

% Modulus division
10 % 5 = 0

** Exponent(raise to power) 10 ** 5 = 10000

Example Program:
#Arithmetic operators

a=int(input("enter the a value"))

b=int(input("enter the b value"))

c=a+b

print("Addition is:",c)

c=a-b

print("Subtraction is:",c)

c=a*b

print("Multiplication is:",c)

c=a/b

print("Division is:",c)

c=a//b

print("Floor Division is:",c)

c=a%b

print("Mod Division is:",c)

c=a**b

print("Power is:",c)

 15

2. Relational Operators:

Operators Description Example

< Less than 5<10

> Greater than 10>5

<= Less than or equal to 5<=10

>= Greater than or equal to 10>=5

== Equal to 10==10

!= Not equal to 5!=10

<> Not equal to(similar to !=) 5<>10

Example Program:

Positive or Zero or Negative number

num = int(input("Enter a number: "))

if (num > 0):

 print("Positive number")

elif (num == 0):

 print("Zero")

else:

 print("Negative number")

 16

3. Assignment Operators:

Operators Description Example Explanation

= Assignment a = 10 a =10

+= Add and assign a += b a =a+b

-= Subtract and Assign a -= b a =a-b

*= Multiply and assign a *= b a =a*b

/= Divide and Assign a /= b a =a/b

//= Floor division and assign a //= b a =a//b

%= Modulus and assign a %= b a =a%b

= Exponent and assign a **= b a =ab

Example Program:

 # Sum of Digit

 n=int(input("Enter a number "))

 sum = 0

 while (n>0):

 r = n%10

 sum = sum + r

 n = n //10

 print("Sum of Digit is ",sum)

 17

4. Logical Operators:

Operators Description Example

and Logical AND(When both conditions

are true output will be true)

(5>4) and (3>2)

or Logical OR (If any one condition is

true output will be true)

(5>4) or (3<2)

not Logical NOT(Compliment the

condition i.e., reverse)

not(5>4)

Example Program: Output:

a=(5>4) and (3>2)

print (a)

b=(5>4) or (3<2)

print (b)

c=not(5>4)

print (c)

1.

2. True

3. True

4. False

 18

5. Membership Operators:

Operators Description Example

in Returns true if a variable is in

sequence of another variable, else false.

 a=10

list=[10,20,30,40,50];

if (a in list):

not in Returns true if a variable is not in

sequence of another variable, else false.

 b=80

list=[10,20,30,40,50];

if(b not in list):

Example Program: Output:

a=10

b=80

list=[10,20,30,40,50];

if (a in list):

 print ("a is in given list")

else:

 print ("a is not in given list")

if(b not in list):

 print ("b is not given in list")

else:

 print ("b is given in list")

a is in given list

b is not given in list

 19

6. Identity Operators:

Operators Description Example

is Returns true if identity of two operands

are same, else false

1. a=20

2. b=20

3. if(a is b):

is not Returns true if identity of two operands

are not same, else false.

4. a=20

5. b=10

6. if(a is not b):

Example Program: Output:

a=20

b=20

if(a is b):

 print("a,b have same identity")

else:

 print("a, b are different")

b=10

if(a is not b):

 print("a,b have different identity")

else:

 print("a,b have same identity")

1. a,b have same identity

2. a,b have different identity

 20

7. Bitwise Operators.

Operators Description Example

& Bitwise AND a & b = 0010

| Bitwise OR a | b = 0011

^ Bitwise exclusive OR a ^ b = 0001

~ Bitwise complement ~a = 1101

<< Shift left a << 2 = 1000

>> Shift right a >> 2 = 0000

Example Program:

a = 2

b = 3

print("Bitwise AND Operator is = ", a & b)

print("Bitwise OR Operator is = ", a | b)

print("Bitwise EXCLUSIVE OR Operator is = ", a ^ b)

print("Bitwise NOT Operator is = ", ~a)

print("Bitwise LEFT SHIFT Operator is = ", a << 2)

print("Bitwise RIGHT SHIFT Operator is = ", b >> 2)

Output:

 Bitwise AND Operator is = 2

 Bitwise OR Operator is = 3

 Bitwise EXCLUSIVE OR Operator is = 1

 Bitwise NOT Operator is = -3

 Bitwise LEFT SHIFT Operator is = 8

 Bitwise RIGHT SHIFT Operator is = 0

 21

Precedence of operators

The following table lists all operators from highest precedence to lowest.

Operators Meaning

() Parentheses

** Exponent

+x, -x, ~x Unary plus, Unary minus, Bitwise NOT

*, /, //, %
Multiplication, Division, Floor division,

Modulus

+, - Addition, Subtraction

<<, >> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==, !=, >, >=, <, <=, is, is not, in, not

in
Comparisions, Identity, Membership operators

not Logical NOT

and Logical AND

or Logical OR

 22

Example Program Output

a = 20

b = 10

c = 15

d = 5

e = 0

e = (a + b) * c / d

print ("Result is ", e)

e = ((a + b) * c) / d

print ("Result is ", e)

e = (a + b) * (c / d);

print ("Result is ", e)

e = a + (b * c) / d;

print ("Result is ", e)

Result is 90.0

Result is 90.0

Result is 90.0

Result is 50.0

 23

Functions

Definition:

 Function is a group of statements that perform a specific task.

 If a program is large, it is difficult to understand the steps involved in it.

 Hence, it is subdivide into a number of smaller programs called subprogram

or functions or modules.

 Each subprogram specifies one or more actions to be performed for the large

program.

 Functions may or may not take arguments and may or may not produce

results.

Advantage of functions (Why functions?):

 Decomposing large program into smaller functions makes program easy to

understand, maintain and debug.

 Functions developed for one program can reuse with or without modification

when need.

 Reduces program development time and cost.

 It is easy to locate and isolate faulty function.

 24

Types of Functions

 Functions are classified into two types

1. Built-in functions - Functions that are built into Python.

2. User-defined functions - Functions defined by the users themselves.

1. Built-in Function

 The Python interpreter has a number of functions that are always available for

use. These functions are called built-in functions.

 The user can not modify the function according to their requirements.

 For example,

 input(), print()

 They are listed below,

Method Description

 abs () returns absolute value of a number

 all() returns true when all elements in iterable is true

Function

 User-defined function Built-in functions

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function
https://www.programiz.com/python-programming/methods/built-in/abs
https://www.programiz.com/python-programming/methods/built-in/all

 25

Method Description

any() Checks if any Element of an Iterable is True

ascii() Returns String Containing Printable Representation

 bin() converts integer to binary string

 bool () Coverts a Value to Boolean

 bytearray() returns array of given byte size

 bytes() returns immutable bytes object

 callable() Checks if the Object is Callable

 chr() Returns a Character (a string) from an Integer

 classmethod() returns class method for given function

compile() Returns a Python code object

 complex() Creates a Complex Number

 delattr() Deletes Attribute From the Object

 dict() Creates a Dictionary

 dir() Tries to Return Attributes of Object

https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/ascii
https://www.programiz.com/python-programming/methods/built-in/bin
https://www.programiz.com/python-programming/methods/built-in/bool
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytes
https://www.programiz.com/python-programming/methods/built-in/callable
https://www.programiz.com/python-programming/methods/built-in/chr
https://www.programiz.com/python-programming/methods/built-in/classmethod
https://www.programiz.com/python-programming/methods/built-in/compile
https://www.programiz.com/python-programming/methods/built-in/complex
https://www.programiz.com/python-programming/methods/built-in/delattr
https://www.programiz.com/python-programming/methods/built-in/dict
https://www.programiz.com/python-programming/methods/built-in/dir

 26

Method Description

 divmod() Returns a Tuple of Quotient and Remainder

 enumerate() Returns an Enumerate Object

eval() Runs Python Code Within Program

 exec() Executes Dynamically Created Program

filter() constructs iterator from elements which are true

 float() returns floating point number from number, string

format() returns formatted representation of a value

frozenset() returns immutable frozenset object

 getattr() returns value of named attribute of an object

globals() returns dictionary of current global symbol table

 hasattr() returns whether object has named attribute

hash() returns hash value of an object

 help() Invokes the built-in Help System

 hex() Converts to Integer to Hexadecimal

https://www.programiz.com/python-programming/methods/built-in/divmod
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/eval
https://www.programiz.com/python-programming/methods/built-in/exec
https://www.programiz.com/python-programming/methods/built-in/filter
https://www.programiz.com/python-programming/methods/built-in/float
https://www.programiz.com/python-programming/methods/built-in/format
https://www.programiz.com/python-programming/methods/built-in/frozenset
https://www.programiz.com/python-programming/methods/built-in/getattr
https://www.programiz.com/python-programming/methods/built-in/globals
https://www.programiz.com/python-programming/methods/built-in/hasattr
https://www.programiz.com/python-programming/methods/built-in/hash
https://www.programiz.com/python-programming/methods/built-in/help
https://www.programiz.com/python-programming/methods/built-in/hex

 27

Method Description

 id() Returns Identify of an Object

 input() reads and returns a line of string

 int() returns integer from a number or string

 isinstance() Checks if a Object is an Instance of Class

 issubclass() Checks if a Object is Subclass of a Class

 iter() returns iterator for an object

 len() Returns Length of an Object

 list() Function creates list in Python

 locals() returns dictionary of current local symbol table

 map() Applies Function and Returns a List

 max() returns largest element

 memoryview() returns memory view of an argument

 min() returns smallest element

 next() Retrieves Next Element from Iterator

https://www.programiz.com/python-programming/methods/built-in/id
https://www.programiz.com/python-programming/methods/built-in/input
https://www.programiz.com/python-programming/methods/built-in/int
https://www.programiz.com/python-programming/methods/built-in/isinstance
https://www.programiz.com/python-programming/methods/built-in/issubclass
https://www.programiz.com/python-programming/methods/built-in/iter
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/list
https://www.programiz.com/python-programming/methods/built-in/locals
https://www.programiz.com/python-programming/methods/built-in/map
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/memoryview
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/next

 28

Method Description

 object() Creates a Featureless Object

 oct() converts integer to octal

 open() Returns a File object

 ord() returns Unicode code point for Unicode character

pow() returns x to the power of y

 print() Prints the Given Object

 property() returns a property attribute

 range() return sequence of integers between start and stop

 repr() returns printable representation of an object

 reversed() returns reversed iterator of a sequence

 round() rounds a floating point number to ndigits places.

 set() returns a Python set

 setattr() sets value of an attribute of object

 slice() creates a slice object specified by range()

https://www.programiz.com/python-programming/methods/built-in/object
https://www.programiz.com/python-programming/methods/built-in/oct
https://www.programiz.com/python-programming/methods/built-in/open
https://www.programiz.com/python-programming/methods/built-in/ord
https://www.programiz.com/python-programming/methods/built-in/pow
https://www.programiz.com/python-programming/methods/built-in/print
https://www.programiz.com/python-programming/methods/built-in/property
https://www.programiz.com/python-programming/methods/built-in/range
https://www.programiz.com/python-programming/methods/built-in/repr
https://www.programiz.com/python-programming/methods/built-in/reversed
https://www.programiz.com/python-programming/methods/built-in/round
https://www.programiz.com/python-programming/methods/built-in/set
https://www.programiz.com/python-programming/methods/built-in/setattr
https://www.programiz.com/python-programming/methods/built-in/slice

 29

Method Description

 sorted() returns sorted list from a given iterable

 staticmethod() creates static method from a function

 str() returns informal representation of an object

 sum() Add items of an Iterable

 super() Allow you to Refer Parent Class by super

 tuple() Function Creates a Tuple

type() Returns Type of an Object

 vars() Returns __dict__ attribute of a class

 zip() Returns an Iterator of Tuples

python __import__() Advanced Function Called by import

2. User-defined Functions

 The functions defined by the users according to their requirements are called

User-defined Functions.

 The user can modify the function according to their requirements.

 Example:

 swap(), addition(), cse(), mech()

https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/staticmethod
https://www.programiz.com/python-programming/methods/built-in/str
https://www.programiz.com/python-programming/methods/built-in/sum
https://www.programiz.com/python-programming/methods/built-in/super
https://www.programiz.com/python-programming/methods/built-in/tuple
https://www.programiz.com/python-programming/methods/built-in/type
https://www.programiz.com/python-programming/methods/built-in/vars
https://www.programiz.com/python-programming/methods/built-in/zip
https://www.programiz.com/python-programming/methods/built-in/__import__

 30

Advantages of user-defined functions

1. User-defined functions help to decompose a large program into small segments

which makes program easy to understand, maintain and debug.

2. If repeated code occurs in a program. Function can be used to include those codes

and execute when needed by calling that function.

3. Programmers working on large project can divide the workload by making

different functions.

Rules of user-defined function

1. Keyword def marks the start of function header.

2. A function name to uniquely identify it.

3. Parameters (arguments) through which we pass values to a function. They are

optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements

must have same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Syntax of Function

def function_name(parameters):

 """docstring"""

 statement(s)

return

 31

How Function works in Python?

Example Program :1

def swap(a,b): #Function definition

 temp=a

 a=b

 b=temp

 print("After swap a=",a,"b=",b)

 return

a=int(input("enter first number"))

b=int(input("enter second number"))

print("Before swap a=",a,"b=",b)

swap(a,b) #Function call

 32

Example Program :2 Output

#user-defined functions

def addition(x,y):

 sum = x + y

 return sum

a = 5

b = 6

print("The sum is", addition(a,b))

The sum is 11

Function Call

 Once we have defined a function, we can call it from another function, program

or even the Python prompt.

 To call a function we simply type the function name with appropriate parameters.

Docstring

 The first string after the function header is called the docstring and is short for

documentation string. It is used to explain in brief, what a function does.

 For example:

 temp=a

 a=b

 b=temp

 print("After swap a=",a,"b=",b)

swap(a,b)

 33

The return statement

 The return statement is used to exit a function and go back to the place from

where it was called.

 Syntax of return

Example Program : Output

 #Factorial Program

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

num=int(input("Enter a number"))

print(factorial(num))

Enter a number 5

120

return [expression_list]

 34

Scope and Lifetime of variables

 Scope of a variable is the portion of a program where the variable is recognized.

Parameters and variables defined inside a function is not visible from outside.

Hence, they have a local scope.

 Lifetime of a variable is the period throughout which the variable exits in the

memory. The lifetime of variables inside a function is as long as the function

executes. They are destroyed once we return from the function.

Flow of execution

 Flow of execution specifies the order in which statements are executed.

 Program execution starts from the first statement of the program.

 One statement is executed at a time from top to bottom.

 Function definitions do not alter the flow of execution of the program, and the

statements inside the function are not executed until the function is called.

 When a function is called, the control flow jumps to the body of the function,

executes all the statements, and return back to the place in the program where the

function call was made.

 Python is good at keeping track of where it is, so each time a function completes,

the program picks up where it left off in the function that called it.

 When it gets to the end of the program, it terminates.

Example Program Output

def my_func():

 x = 10 # Scope variable

 print("Value inside function:",x)

x = 20 # Global variable

my_func()

print("Value outside function:",x)

Value inside function: 10

Value outside function: 20

 35

Parameters and arguments

 Arguments are the values provided to the function during the function call.

 Parameters are name used inside the function definition to refer to the value

passed as an argument.

 Inside the function, the value of arguments passed during function call is

assigned to parameters.

Functions with no arguments

 The empty parentheses after the function name indicate that this function doesn’t

take any arguments.

Example Program Output

import math

def raise1(num,power): #parameters num, power

 print(math.pow(num,power))

a=10

b=2

raise1(a,b) #arguments a,b

100

Example Program Output

import math

def show_PI():

 print(math.pi)

show_PI() #no arguments

3.141592653589793

 36

Functions with arguments

 Functions may also receive arguments (variables passed from the caller to the

function).

 Arguments in function call are assigned to function parameters.

Example Program Output

import math

def circle(r):

 area=math.pi*r*r

 perimeter=2*math.pi*r

 print("area=",area)

 print("perimeter=",perimeter)

r=float(input("Enter the r value"))

circle(r) #with arguments

Enter the r value

3

area= 28.274333882308138

perimeter= 18.84955592153876

 37

Function Arguments

 Following types of formal arguments are used in Python

1. Required Arguments

2. Keyword Arguments

3. Default Arguments

4. Variable – length Arguments (or) Arbitrary Arguments

 1. Required Arguments

 In Required arguments, the number of arguments passed in the function call

should match exactly with the function definition.

Example Output

def welcome(str1,str2):

 print(str1 + ', ' + str2)

welcome("welcome" , "First year ")

welcome , First year

 2. Keyword Arguments

 When we call a function with some values, these values get assigned to the

arguments according to their position.

Example Output

def multiple_display(message, times):

 for i in range(times):

 print(message)

multiple_display(message="welcome first year", times=4)

welcome first year

welcome first year

welcome first year

welcome first year

 38

3. Default Arguments

 We can provide a default value to an argument by using the assignment operator

(=).

Example Output

def mydetail(name,age=20):

 print("name=",name)

 print("age=",age)

 return;

mydetail(name="raja",age=18)

mydetail(name="kumar")

name= raja

age= 18

name= kumar

age= 20

4. Variable – length Arguments (or) Arbitrary Arguments

 Sometimes, the number of arguments that will be passed into a function is not

known in advance.

 Python allows us to handle this kind of situation through function calls with

arbitrary number of arguments.

 In the function definition we use an asterisk (*) before the parameter name to

denote this kind of argument.

Example Output

def dept(*names):

 # names is a tuple with arguments

 for name in names:

 print("Hello",name)

dept("cse","mech","ece","civil")

Hello cse

Hello mech

Hello ece

Hello civil

 39

Modules

Definition:

 Modules refer to a file containing Python statements and definitions.

 It defines functions, classes and variables and includes runnable code also.

 Functions are groups of code and modules are groups of functions.

 We use modules to break down large programs into small manageable and

organized files. Furthermore, modules provide reusability of code.

 We can define our most used functions in a module and import it, instead of

copying their definitions into different programs.

Create a module:

 Type the following and save it as example.py.

Python Module example

def add(a, b):

 """This program adds two

 numbers and return the result"""

 result = a + b

 return result

Here, we have defined a function add() inside a module named example. The function

takes in two numbers and returns their sum.

https://www.programiz.com/python-programming/function

 40

How to import modules in Python?

 We can import the definitions inside a module to another module or the

interactive interpreter in Python.

 We use the import keyword to do this. To import our previously defined

module example we type the following in the Python prompt.

 >>> import example

 This does not enter the names of the functions defined in example directly in the

current symbol table. It only enters the module name example there.

 Using the module name we can access the function using dot (.) operation. For

example:

 >>> example.add(4,5)

 9

 Python has a ton of standard modules available.

 You can check out the full list of Python standard modules and what they are for.

These files are in the Lib directory inside the location where you installed

Python.

 Standard modules can be imported the same way as we import our user-defined

modules.

 There are various ways to import modules. They are listed as follows.

http://docs.python.org/3/py-modindex.html

 41

Python from...import statement

 We can import specific names form a module without importing the module as a

whole.

 Syntax:

 Example:

Example Output

import pi & e from math module

import math

print("The value of pi is", math.pi)

print("The value of Eulers is", math.e)

The value of pi is 3.141592653589793

The value of Eulers is 2.718281828459045

 We imported only the attribute pi form the module.

 In such case we don't use the dot operator. We could have imported multiple

attributes as follows.

>>> from math import pi, e

>>> pi

3.141592653589793

>>> e

2.718281828459045

from python_file import function_name

 42

Import with renaming

 We can import a module by renaming it as follows.

 We have renamed the math module as m. This can save us typing time in some

cases.

 Note that the name math is not recognized in our scope. Hence, math.pi is

invalid, m.pi is the correct implementation.

Example Output

import module by renaming it

import math as m

print("The value of pi is", m.pi)

The value of pi is 3.141592653589793

Import all names

 We can import all names(definitions) form a module using the following

construct.

Syntax:

 We imported all the definitions from the math module. This makes all names

except those beginnig with an underscore, visible in our scope.

 Importing everything with the asterisk (*) symbol is not a good programming

practice. This can lead to duplicate definitions for an identifier

Example Output

import all names form

the standard module math

from math import *

print("The value of pi is", pi)

The value of pi is 3.141592653589793

from python_file import *

 43

Example Programs:

Example Programs: Output:

#from …..import Statement

def add(a,b):

 result=a+b

 return result

def sub(a,b):

 result=a-b

 return result

>>> from import1 import add

>>> add(8,9)

17

>>> from import1 import sub

>>> sub(9,5)

4

 44

Illustrative programs:

 1. Exchange the values of two variables

Programs Output:

def swap(a,b): #Function definition

 a,b=b,a

 print("After swap a=",a,"b=",b)

 return

a=int(input("enter first number"))

b=int(input("enter second number"))

print("Before swap a=",a,"b=",b)

swap(a,b) #Function call

enter first number 10

enter second number 20

Before swap a= 10 b= 20

After swap a= 20 b= 10

2. Exchange the values using third (temporary) variable

Programs Output:

def swap(a,b): #Function definition

 temp=a

 a=b

 b=temp

 print("After swap a=",a,"b=",b)

 return

a=int(input("enter first number"))

b=int(input("enter second number"))

print("Before swap a=",a,"b=",b)

swap(a,b) #Function call

enter first number 10

enter second number 20

Before swap a= 10 b= 20

After swap a= 20 b= 10

 45

3. Circulate the values of n variables

Programs Output:

def circulate(a,b,c):

 temp=a

 a=b

 b=c

 c=temp

 print("Before circulate a=",a,"b=",b,"c=",c)

a=int(input("enter the a value"))

b=int(input("enter the b value"))

c=int(input("enter the c value"))

print("Before circulate a=",a,"b=",b,"c=",c)

circulate(a,b,c)

enter the a value 5

enter the b value 6

enter the c value 7

Before circulate a= 5 b= 6 c= 7

Before circulate a= 6 b= 7 c= 5

4. Distance between two points.

Programs Output:

import math

def Distance(x1,y1,x2,y2):

 dx=x2-x1;

 dy=y2-y1;

 dist = dx**2 + dy**2

 result = math.sqrt(dist)

 return result

x1=int(input("entr x1"))

y1=int(input("entr y1"))

x2=int(input("entr x2"))

y2=int(input("entr y2"))

print(Distance(x1, y1, x2, y2))

enter x1 2

enter y1 2

enter x2 4

enter y2 4

2.8284271247461903

