chapter 3

the interaction
The Interaction

- **interaction models**
 - translations between user and system
- **ergonomics**
 - physical characteristics of interaction
- **interaction styles**
 - the nature of user/system dialog
- **context**
 - social, organizational, motivational
What is interaction?

communication

user ↔ system

but is that all ... ?

– see “language and action” in chapter 4 ...
models of interaction

terms of interaction
Norman model
interaction framework
Some terms of interaction

domain – the area of work under study

e.g. graphic design

goal – what you want to achieve

e.g. create a solid red triangle

task – how you go about doing it

– ultimately in terms of operations or actions

e.g. ... select fill tool, click over triangle

Note ...

– traditional interaction ...

– use of terms differs a lot especially task/goal !!!
Donald Norman’s model

- **Seven stages**
 - user establishes the goal
 - formulates intention
 - specifies actions at interface
 - executes action
 - perceives system state
 - interprets system state
 - evaluates system state with respect to goal

- Norman’s model concentrates on user’s view of the interface
execution/evaluation loop

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal
execution/evaluation loop

- user establishes the goal
 - formulates intention
 - specifies actions at interface
 - executes action
 - perceives system state
 - interprets system state
- evaluates system state with respect to goal
execution/evaluation loop

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal
execution/evaluation loop

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal
Abowd and Beale framework

extension of Norman...
their interaction framework has 4 parts
- user
- input
- system
- output

each has its own unique language

interaction \Rightarrow translation between languages

problems in interaction $=$ problems in translation
Using Abowd & Beale's model

user intentions
→ translated into actions at the interface
 → translated into alterations of system state
 → reflected in the output display
 → interpreted by the user

general framework for understanding interaction
- not restricted to electronic computer systems
- identifies all major components involved in interaction
- allows comparative assessment of systems
- an abstraction
ergonomics

physical aspects of interfaces
industrial interfaces
Ergonomics

• Study of the physical characteristics of interaction

• Also known as human factors – but this can also be used to mean much of HCI!

• Ergonomics good at defining standards and guidelines for constraining the way we design certain aspects of systems
Ergonomics - examples

• **arrangement of controls and displays**
 e.g. controls grouped according to function or frequency of use, or sequentially

• **surrounding environment**
 e.g. seating arrangements adaptable to cope with all sizes of user

• **health issues**
 e.g. physical position, environmental conditions (temperature, humidity), lighting, noise,

• **use of colour**
 e.g. use of red for warning, green for okay, awareness of colour-blindness etc.
Industrial interfaces

Office interface vs. industrial interface?

Context matters!

<table>
<thead>
<tr>
<th></th>
<th>office</th>
<th>industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>type of data</td>
<td>textual</td>
<td>numeric</td>
</tr>
<tr>
<td>rate of change</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>environment</td>
<td>clean</td>
<td>dirty</td>
</tr>
</tbody>
</table>

... the oil soaked mouse!
interaction styles

dialogue ... computer and user

distinct styles of interaction
Common interaction styles

• command line interface
• menus
• natural language
• question/answer and query dialogue
• form-fills and spreadsheets
• WIMP
• point and click
• three-dimensional interfaces
elements of the wimp interface

windows, icons, menus, pointers

+++ buttons, toolbars, palettes, dialog boxes

also see supplementary material on choosing wimp elements
Windows

• **Areas of the screen that behave as if they were independent**
 – can contain text or graphics
 – can be moved or resized
 – can overlap and obscure each other, or can be laid out next to one another (tiled)

• **scrollbars**
 – allow the user to move the contents of the window up and down or from side to side

• **title bars**
 – describe the name of the window
Icons

- small picture or image
- represents some object in the interface
 - often a window or action
- windows can be closed down (iconised)
 - small representation of many accessible windows
- icons can be many and various
 - highly stylized
 - realistic representations.
Pointers

- **important component**
 - WIMP style relies on pointing and selecting things
- uses mouse, trackpad, joystick, trackball, cursor keys or keyboard shortcuts
- wide variety of graphical images
Menus

- Choice of operations or services offered on the screen
- Required option selected with pointer

Problem: take a lot of screen space
Solution: pop-up: menu appears when needed
Kinds of Menus

• Menu Bar at top of screen (normally), menu drags down
 – pull-down menu - mouse hold and drag down menu
 – drop-down menu - mouse click reveals menu
 – fall-down menus - mouse just moves over bar!

• Contextual menu appears where you are
 – pop-up menus - actions for selected object
 – pie menus - arranged in a circle
 • easier to select item (larger target area)
 • quicker (same distance to any option)
 ... but not widely used!
Menus extras

- **Cascading menus**
 - hierarchical menu structure
 - menu selection opens new menu
 - and so in ad infinitum

- **Keyboard accelerators**
 - key combinations - same effect as menu item
 - two kinds
 - active when menu open – *usually first letter*
 - active when menu closed – *usually Ctrl + letter*
 usually different !!!
Menus design issues

- which kind to use
- what to include in menus at all
- words to use (action or description)
- how to group items
- choice of keyboard accelerators
Buttons

• individual and isolated regions within a display that can be selected to invoke an action

• Special kinds
 – radio buttons
 – set of mutually exclusive choices
 – check boxes
 – set of non-exclusive choices
Toolbars

• long lines of icons ...
 ... but what do they do?

• fast access to common actions

• often customizable:
 – choose *which* toolbars to see
 – choose *what* options are on it
Palettes and tear-off menus

• Problem
 menu not there when you want it

• Solution
 palettes – little windows of actions
 – shown/hidden via menu option
 e.g. available shapes in drawing package
 tear-off and pin-up menus
 – menu ‘tears off’ to become palette
Dialogue boxes

• information windows that pop up to inform of an important event or request information.

e.g: when saving a file, a dialogue box is displayed to allow the user to specify the filename and location. Once the file is saved, the box disappears.
interactivity

easy to focus on look
what about feel?
Speech-driven interfaces

• rapidly improving but still inaccurate

• how to have robust dialogue? ... interaction of course!

e.g. **airline reservation:**
 reliable “yes” and “no”
 + system reflects back its understanding
 “you want a ticket from New York to Boston?”
Look and ... feel

- WIMP systems have the same elements:
 windows, icons., menus, pointers, buttons, etc.

- but different window systems
 ... behave differently

 e.g. MacOS vs Windows menus

appearance + behaviour = look and feel
Context

Interaction affected by social and organizational context

- **other people**
 - desire to impress, competition, fear of failure

- **motivation**
 - fear, allegiance, ambition, self-satisfaction

- **inadequate systems**
 - cause frustration and lack of motivation
Experience, engagement and fun

designing experience
physical engagement
managing value
Experience?

- **home, entertainment, shopping**
 - not enough that people can use a system
 - they must want to use it!

- **psychology of experience**
 - flow (Csikszentimihalyi)
 - balance between anxiety and boredom

- **education**
 - zone of proximal development
 - things you can just do with help

- **wider ...**
 - literary analysis, film studies, drama
Designing experience

- real crackers
 - cheap and cheerful!
 - bad joke, plastic toy, paper hat
 - pull and bang
Designing experience

- virtual crackers
 - cheap and cheerful
 - bad joke, web toy, cut-out mask
 - click and bang
Designing experience

• virtual crackers
 – cheap and cheerful
 – bad joke, web toy, cut-out mask
 – click and bang
how crackers work

sender

fill in web form

To: wxv
From: ...

recipient

receive email

closed cracker page

recipient clicks cracker opens ... very slowly

open cracker page

joke links

sender

watches progress

open message

web toy

mask
Physical design

• many constraints:
 – ergonomic – minimum button size
 – physical – high-voltage switches are big
 – legal and safety – high cooker controls
 – context and environment – easy to clean
 – aesthetic – must look good
 – economic – ... and not cost too much!
Design trade-offs

constraints are contradictory ... need trade-offs

within categories:
 e.g. safety – cooker controls
 front panel – safer for adult
 rear panel – safer for child

between categories
 e.g. ergonomics vs. physical – MiniDisc remote
 ergonomics – controls need to be bigger
 physical – no room!
 solution – multifunction controls & reduced functionality
Fluidity

• do external physical aspects reflect logical effect?
 – related to affordance (chap 5)

logical state revealed in physical state?
 e.g. on/off buttons

inverse actions inverse effects?
 e.g. arrow buttons, twist controls
inverse actions

- yes/no buttons
 - well sort of

- ‘joystick’

- also left side control
spring back controls

- one-shot buttons
- joystick
- some sliders

good – large selection sets
bad – hidden state
a minidisk controller

series of spring-back controls
each cycle through some options
- natural inverse back/forward

twist for track movement
pull and twist for volume
- spring back
- natural inverse for twist
physical layout

controls:

logical relationship

~ spatial grouping
compliant interaction

state evident in mechanical buttons

rotary knobs reveal internal state and can be controlled by both user and machine
Managing value

people use something

ONLY IF

it has perceived value

AND

value exceeds cost

BUT NOTE

- exceptions (e.g. habit)
- value **NOT** necessarily personal gain or money
Weighing up value

value
- helps me get my work done
- fun
- good for others

cost
- download time
- money £, $, €
- learning effort
Discounted future

- in economics Net Present Value:
 - discount by \((1 + \text{rate})^{\text{years to wait}}\)

- in life people heavily discount
 - future value and future cost
 - hence resistance to learning
 - need low barriers
 - and high perceived present value
example - HCI book search

- value for people *who have* the book helps you to look up things
 - chapter and page number

- value for those *who don’t* ...

 sort of online mini-encyclopaedia
 - full paragraph of context

... but also says “buy me”!!
Value and organisational design

- coercion
 - tell people what to do!
 - value = keep your job
- enculturation
 - explain corporate values
 - establish support (e.g. share options)
- emergence
 - design process so that individuals value → organisational value
General lesson ...

if you want someone to do something ...

• make it easy for them!

• understand their values