

First-Order Logic
Part One

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)
● Applying a predicate to arguments produces a

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll

have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions

● First-order logic allows functions that return
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Predicates

● When working in first-order logic, be
careful to keep objects (actual things) and
propositions (true or false) separate.

● You cannot apply connectives to objects:

 ⚠ Venus → TheSun ⚠
● You cannot apply functions to

propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask!

Some muggle is intelligent.

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the
statement some-formula is true when that
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

Is this overall
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

Is this overall
statement true or

false?

 ∃x. Smiling(x)

Fun with Edge Cases

 ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an

empty world, since nothing
exists, period!

Existentially-quantified
statements are false in an

empty world, since nothing
exists, period!

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

Is this overall
statement true or

false in this
scenario?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

Is this overall
statement true or

false in this
scenario?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

