First-Order Logic

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:
 - Negation: $\neg p$
 - Conjunction: $p \land q$
 - Disjunction: $p \lor q$
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
 - True: ⊤
 - False: \bot

What is First-Order Logic?

- **First-order logic** is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
 - predicates that describe properties of objects,
 - *functions* that map objects to one another, and
 - *quantifiers* that allow us to reason about multiple objects.

Some Examples

$Likes(You, Eggs) \land Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)$

> These blue terms are called *constant symbols*. Unlike propositional variables, they refer to *objects*, not *propositions*.

> The red things that look like function calls are called *predicates*. Predicates take objects as arguments and evaluate to true or false.

> What remains are traditional propositional connectives. Because each predicate evaluates to true or false, we can connect the truth values of predicates using normal propositional connectives.

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)

- Applying a predicate to arguments produces a proposition, which is either true or false.
- Typically, when you're working in FOL, you'll have a list of predicates, what they stand for, and how many arguments they take. It'll be given separately than the formulas you write.

First-Order Sentences

Sentences in first-order logic can be constructed from predicates applied to objects:
Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

 $Succeeds(You) \leftrightarrow Practices(You)$

 $x < 8 \rightarrow x < 137$

The less-than sign is just another predicate. Binary predicates are sometimes written in *infix notation* this way.

Numbers are not "built in" to first-order logic. They're constant symbols just like "You" and "a" above.

Equality

- First-order logic is equipped with a special predicate = that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

TomMarvoloRiddle = LordVoldemort MorningStar = EveningStar

• Equality can only be applied to **objects**; to state that two **propositions** are equal, use \leftrightarrow .

Let's see some more examples.

> These purple terms are *functions*. Functions take objects as input and produce objects as output.

Functions

- First-order logic allows *functions* that return objects associated with other objects.
- Examples:

ColorOf(Money) MedianOf(x, y, z) x + y

- As with predicates, functions can take in any number of arguments, but always return a single value.
- Functions evaluate to *objects*, not *propositions*.

Objects and Predicates

- When working in first-order logic, be careful to keep objects (actual things) and propositions (true or false) separate.
- You cannot apply connectives to objects: $\underbrace{ N } Venus \rightarrow TheSun \underbrace{ N }$
- You cannot apply functions to propositions:

• Ever get confused? *Just ask!*

Some muggle is intelligent.

Some muggle is intelligent. ∃*m*. (*Muggle*(*m*) ∧ *Intelligent*(*m*))

∃ is the *existential quantifier* and says "for some choice of m, the following is true."

• A statement of the form

∃x. some-formula

is true if, for *some* choice of *x*, the statement **some-formula** is true when that *x* is plugged into it.

• Examples:

 $\exists x. (Even(x) \land Prime(x))$

 $\exists x. (TallerThan(x, me) \land LighterThan(x, me))$

 $(\exists w. Will(w)) \rightarrow (\exists x. Way(x))$

 $\exists x. Smiling(x)$

 $\exists x. Smiling(x)$

Fun with Edge Cases

 $\exists x. Smiling(x)$

Fun with Edge Cases

Existentially-quantified statements are false in an empty world, since nothing exists, period!

∃x. *Smiling*(x)

"For any natural number n, n is even if and only if n^2 is even"

 $\forall n. (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow Even(n^2)))$

"For any natural number n, n is even if and only if n^2 is even"

 $\forall n. \ (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow Even(n^2)))$

∀ is the universal quantifier and says "for any choice of n, the following is true."

• A statement of the form

$\forall x. some-formula$

is true if, for every choice of *x*, the statement **some-formula** is true when *x* is plugged into it.

- Examples:
 - $\forall p. \ (Puppy(p) \rightarrow Cute(p))$

 $\forall a. (EatsPlants(a) \lor EatsAnimals(a))$

 $Tallest(SultanK\"osen) \rightarrow$

 $\forall x. (SultanK\"osen \neq x \rightarrow ShorterThan(x, SultanK\"osen))$

 $\forall x. Smiling(x)$

 $\forall x. Smiling(x)$

