First-Order Logic Part One

- A propositional variable is a variable that is either true or false.
- The propositional connectives are as follows:
- Negation: $\neg p$
- Conjunction: $p \wedge q$
- Disjunction: $p \vee q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: T
- False: \perp

What is First-Order Logic?

- First-order logic is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
- predicates that describe properties of objects,
- functions that map objects to one another, and
- quantifiers that allow us to reason about multiple objects.

Some Examples

$\operatorname{Likes}($ You, Eggs) $\wedge \operatorname{Likes(You,~Tomato)~} \rightarrow \operatorname{Likes(You,~Shakshuka)~}$

$\operatorname{Likes}($ You, Eggs) $\wedge \operatorname{Likes(You,~Tomato)~} \rightarrow$ Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes (You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

 Learns(You, History) v ForeverRepeats(You, History)In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called constant symbols. Unlike propositional variables, they refer to objects, not propositions.
$\operatorname{Likes}($ You, Eggs $) \wedge \operatorname{Likes}($ You, Tomato $) \rightarrow \operatorname{Likes}($ You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)
$\operatorname{Likes}($ You, Eggs $) \wedge \operatorname{Likes}($ You, Tomato $) \rightarrow \operatorname{Likes}($ You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

The red things that look like function calls are called predicates. Predicates take objects as arguments and evaluate to true or false.

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^ Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional connectives. Because each predicate evaluates to true or false, we can connect the truth values of predicates using normal propositional connectives.

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:

Cute(Quokka)
ArgueIncessantly(Democrats, Republicans)

- Applying a predicate to arguments produces a proposition, which is either true or false.
- Typically, when you're working in FOL, you'll have a list of predicates, what they stand for, and how many arguments they take. It'll be given separately than the formulas you write.

First-Order Sentences

- Sentences in first-order logic can be constructed from predicates applied to objects:

$$
\begin{gathered}
\text { Cute }(a) \rightarrow \operatorname{Dikdik}(a) \vee \operatorname{Kitty}(a) \text { v Puppy }(a) \\
\text { Succeeds }(Y o u)
\end{gathered} \leftrightarrow \operatorname{Practices(You)} \text { (Y) }
$$

$$
x<8 \rightarrow x<137
$$

The less -than sign is just another predicate. Binary predicates are sometimes written in infix notation this way.

Numbers are not "built
$\mathrm{in}^{\text {" }}$ to first-order logic. They're constant symbols just like "You" and "a" above.

Equality

- First-order logic is equipped with a special predicate $=$ that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

$$
\begin{gathered}
\text { TomMarvoloRiddle }=\text { LordVoldemort } \\
\text { MorningStar }=\text { EveningStar }
\end{gathered}
$$

- Equality can only be applied to objects; to state that two propositions are equal, use \leftrightarrow.

Let's see some more examples.

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) ^ StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) ^ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are functions. Functions take objects as input and produce objects as output.

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

Functions

- First-order logic allows functions that return objects associated with other objects.
- Examples:

$$
\begin{gathered}
\text { ColorOf(Money) } \\
\text { MedianOf(} x, y, z) \\
x+y
\end{gathered}
$$

- As with predicates, functions can take in any number of arguments, but always return a single value.
- Functions evaluate to objects, not propositions.

Objects and Predicates

- When working in first-order logic, be careful to keep objects (actual things) and propositions (true or false) separate.
- You cannot apply connectives to objects: © Venus \rightarrow TheSun
- You cannot apply functions to propositions:
© StarOf(IsRed(Sun) ^ IsGreen(Mars)) ©
- Ever get confused? Just ask!

Some muggle is intelligent.

Some muggle is intelligent.

$\exists m$. (Muggle(m) ^ Intelligent(m))

Some muggle is intelligent.

$\exists m .(M u g g l e(m) \wedge$ Intelligent (m))

\exists is the existential quantifier and says "for some choice of m, the following is true."

The Existential Quantifier

- A statement of the form

$$
\exists x . \text { some-formula }
$$

is true if, for some choice of x, the statement some-formula is true when that x is plugged into it.

- Examples:
$\exists x .(E v e n(x) \wedge \operatorname{Prime}(x))$
$\exists x$. (TallerThan(x, me) \wedge LighterThan(x, me))
$(\exists w . \operatorname{Will}(w)) \rightarrow(\exists x . \operatorname{Way}(x))$

The Existential Quantifier

$\exists x . \operatorname{Smiling}(x)$

The Existential Quantifier

The Existential Quantifier

$\exists x . \operatorname{Smiling}(x)$

The Existential Quantifier

The Existential Quantifier

$(\exists x . S m i l i n g(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat $(y))$

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . S m i l i n g(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat $(y))$

The Existential Quantifier

$(\exists x$. Smiling $(x)) \rightarrow(\exists y$. WearingHat $(y))$

Fun with Edge Cases

$\exists x . \operatorname{Smiling}(x)$

Fun with Edge Cases

Existentially-quantified statements are false in an empty world, since nothing exists, period!
$\exists x$. Smiling (x)
"For any natural number n, n is even if and only if n^{2} is even"
$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$
"For any natural number n, n is even if and only if n^{2} is even"

$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

\forall is the universal quantifier and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form

$\forall x$. some-formula

is true if, for every choice of x, the statement some-formula is true when x is plugged into it.

- Examples:
\forall. $(\operatorname{Puppy}(p) \rightarrow$ Cute $(p))$
$\forall a$. (EatsPlants(a) v EatsAnimals(a))
Tallest(SultanKösen) \rightarrow
$\forall x$. (SultanKösen $\neq x \rightarrow$ ShorterThan(x, SultanKösen))

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

Since Smiling (x) is true for every choice of x, this statement evaluates to true.
$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

Since Smiling (x) is true for every choice of x, this statement evaluates to true.
$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

The Universal Quantifier

The Universal Quantifier

Since Smiling(x) is false for this choice x, this statement evaluates to false.

The Universal Quantifier

Since Smiling(x) is false for this choice x, this statement evaluates to false.

The Universal Quantifier

$(\forall x . \operatorname{Smiling}(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

$(\forall x . S m i l i n g(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$.Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this overall statement true or false in this scenario?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this overall statement true or false in this scenario?

$(\forall x . \operatorname{Smiling}(x)) \rightarrow(\forall y$. WearingHat $(y))$

