
  

First-Order Logic
Part One



  

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)
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These blue terms are called 
constant symbols. Unlike 
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propositions.
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What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.
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Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:

Cute(Quokka)    

ArgueIncessantly(Democrats, Republicans)  
● Applying a predicate to arguments produces a 

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll 

have a list of predicates, what they stand for, and 
how many arguments they take. It’ll be given 
separately than the formulas you write.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))
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Functions

● First-order logic allows functions that return 
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Predicates

● When working in first-order logic, be 
careful to keep objects (actual things) and 
propositions (true or false) separate.

● You cannot apply connectives to objects:

        ⚠                 Venus → TheSun                  ⚠        
● You cannot apply functions to 

propositions:

 ⚠        StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠        
● Ever get confused? Just ask! 



  

Some muggle is intelligent.



  

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”
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The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the 
statement some-formula is true when that 
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))



  

The Existential Quantifier

∃x. Smiling(x)
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The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))
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Fun with Edge Cases
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Fun with Edge Cases

Existentially-quantified 
statements are false in an 

empty world, since nothing 
exists, period!
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“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 
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The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifier

∀x. Smiling(x)
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