
UNIT – 4

COMPOUND DATA:
LISTS, TUPLES, DICTIONARIES

4.1 LISTS
A list is a sequence of any type of values and can be created as a set of comma-separated

values within square brackets. The values in a list are called elements or items. A list within another
list is called nested list.

Sample code for creating lists
list1 = [‘Ram’, ‘Chennai’, 2017] # list of different types of elements
list2 = [10, 20, 30, 40, 50] # list of numbers
list3 = [] # empty list
list4 = [‘Priya’, 2017, 99.8, [‘Mumbai’, ‘India’]] # nested list
print list1
print list2, list3
print list4

Sample Output:
[‘Ram’, ‘Chennai’, 2017]
[10, 20, 30, 40, 50] []
[‘Priya’, 2017, 99.8, [‘Mumbai’, ‘India’]]

4.1.1 Accessing elements in lists using subscript operator
The indices of list’s elements are numbered from 0 from the left end and numbered from -1

from the right end. For a list [‘Ram’, ‘Chennai’, 2017], the indices of elements ‘Ram’, ‘Chennai’
and 2017 are shown in the following figure:

Element ‘Ram’ ‘Chennai’ 2017
Index from left end 0 1 2
Index from right end –3 –2 –1

To access the element(s) of a list, subscript operator [] (also known as slicing operator) is
used. Index within [] indicates the position of the particular element in the list and it must be an
integer expression.

4.2 Problem Solving and Python Programming

For eg, in a list stulist = [‘Ram’, ‘Chennai’, 2017], stulist[1] returns Chennai as its output.

4.1.2 List operations
Lists operate on + and * operators. Here, + represents concatenation and * represents

repetition. The following code explains the concatenation of two lists named num1 and num2:

Sample Code and output for + (Concatenation)

Code Output
num1=[10, 20, 30]
num2=[40, 50]
num3=num1+num2

[10, 20, 30]
[40, 50]
[10, 20, 30, 40, 50]

print num1
print num2
print num3

The following code is another example for concatenation, where a list contains elements of
different data types:

Code Output
stulist = [‘Ram’, ‘Chennai’, 2017]
newlist = stulist+[‘CSE’]

[‘Ram’, ‘Chennai’, 2017]
[‘Ram’, ‘Chennai’, 2017, ‘CSE’]

print stulist
print newlist

Sample code and output for * (Repetition)

The following code describes the repetition operation which is performed on a list num1 for
3 times:

Code Output
num1=[10, 20]
num2=num1*3

[10, 20]
[10, 20, 10, 20, 10, 20]

print num1
print num2

4.1.3 List Slices
A part of a list is called list slice. The operator [m:n] returns the part of the list from mth

index to nth index, including the element at mth index but excluding the element at nth index.

If the first index is omitted, the slice starts at the beginning of the string. If the second index
is omitted, the slice goes to the end of the string. If the first index is greater than or equals to the
second, the slice is an empty string. If both indices are omitted, the slice is a given string itself.

Compound Data: Lists, Tuples, Dictionaries 4.3

Sample code and output for list slicing

Code Output Description
stulist = [‘Ram’,
‘Chennai’, 2017]

List is created with 3 elements

print stulist[0] Ram Slice has the element at index 0
print stulist[:3] [‘Ram’, ‘Chennai’, 2017] Slice is from the beginning
print stulist[1:] [‘Chennai’, 2017] Slice goes to the end
print stulist[1:1] [] Slice is empty
print stulist[5:2] [] Slice is empty
print stulist[:] [‘Ram’, ‘Chennai’, 2017] Entire list is the slice
print stulist[-2:] [‘Chennai’, 2017] Slice goes to the end
print stulist[:-2] [‘Ram’] Slice is from the beginning
print stulist[1:3] [‘Chennai’, 2017] Slice is from 1st index to 2nd index

(excluding the 3rd index)

4.1.4 List methods
Python provides the following methods that work on lists:

1. append
Adds element to the end of specified list and does not return any value.
Syntax: listname.append(element)

Sample code for append
stulist = [‘Ram’, ‘Chennai’, 2017]
stulist.append(‘CSE’)
print ‘After appending’
print stulist

Sample output:
After appending
[‘Ram’, ‘Chennai’, 2017, ‘CSE’]

2. count
Returns the number of occurrences of an element in a specified list.

Syntax: listname.count(element)

Sample code for count

stulist = [‘Ram’, ‘Chennai’, 2017, ‘Priya’, ‘Mumbai’, 2017]

print stulist

4.4 Problem Solving and Python Programming

print ‘Count for Chennai : ‘, stulist.count(‘Chennai’)

print ‘Count for 2017 : ‘, stulist.count(2017)

Sample output:
[‘Ram’, ‘Chennai’, 2017, ‘Priya’, ‘Mumbai’, 2017]
Count for Chennai : 1
Count for 2017 : 2

3. extend
Appends the contents of secondlist to the firstlist and does not return any value.

Syntax: firstlist.extend(secondlist)

Sample code for extend

stulist = [‘Ram’, ‘Chennai’, 2017]

dept = [‘CSE’]

print “Before Extend : “, stulist

stulist.extend(dept)

print “After Extend : “, stulist

Sample output:
Before Extend : [‘Ram’, ‘Chennai’, 2017]
After Extend : [‘Ram’, ‘Chennai’, 2017, ‘CSE’]

4. index
Returns the index of an element, if an element is found in the specified list. Else, an exception

is raised.

Syntax: listname.index(element)

Sample code for index

stulist = [‘Ram’, ‘Chennai’, 2017]

print ‘Index of Ram : ‘, stulist.index(‘Ram’)

print ‘Index of Chennai : ‘, stulist.index(‘Chennai’)

print ‘Index of 2017 : ‘, stulist.index(2017)

Sample output:
Index of Ram : 0
Index of Chennai : 1
Index of 2017 : 2

Compound Data: Lists, Tuples, Dictionaries 4.5

6. insert
Inserts the given element at the given index in a specified list and does not return any value

Syntax: listname.insert(index, element)

Sample code for insert

stulist = [‘Ram’, ‘Chennai’, 2017]

print ‘Before insert : ‘,stulist

stulist.insert(1, ‘CSE’)

print ‘After insert : ‘, stulist

Sample output:
Before insert : [‘Ram’, ‘Chennai’, 2017]
After insert : [‘Ram’, ‘CSE’, ‘Chennai’, 2017]

7. pop
Removes and returns the element from the end of specified list

Syntax: listname.pop()

Sample code for pop

stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]

print ‘Initial list is : ‘, stulist

print ‘Popping the last item : ‘, stulist.pop()

print ‘After popping the last item, the list is : ‘, stulist

Sample output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
Popping the last item : 92.7
After popping the last item, the list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’]

8. pop(index)
Removes and returns the element at given index.

Syntax: listname.pop(index)

Sample code for pop(index)

stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]

print ‘Initial list is : ‘, stulist

print ‘Popping an item with index 2 : ‘, stulist.pop(2)

4.6 Problem Solving and Python Programming

2 is an index of the item to be removed

print ‘Now the list is : ‘,stulist

Sample output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
Popping an item with index 2 : 2017
Now the list is : [‘Ram’, ‘Chennai’, ‘CSE’, 92.7]

9. remove

Removes an element from the list and does not return any value.

Syntax: listname.remove(element)

Sample code for remove

stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7, 2017]

print ‘Initial list is : ‘, stulist

stulist.remove(‘CSE’)

print ‘After removing CSE from the list : ‘, stulist

stulist.remove(2017)

print ‘After removing 2017 from the list : ‘, stulist

Sample output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7, 2017]
After removing CSE from the list : [‘Ram’, ‘Chennai’, 2017, 92.7, 2017]
After removing 2017 from the list : [‘Ram’, ‘Chennai’, 92.7, 2017]

10. reverse

Reverses the entire list

Syntax: listname.reverse()

Sample code for reverse

stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]

print ‘Initial list is : ‘, stulist

stulist.reverse()

print ‘After reversing, the list is : ‘, stulist

Sample output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
After reversing, the list is : [92.7, ‘CSE’, 2017, ‘Chennai’, ‘Ram’]

Compound Data: Lists, Tuples, Dictionaries 4.7

11. sort

Sorts the list in ascending order.

Syntax: listname.sort()

Sample code for sort
numlist = [6, 28, 11, 4, 20, 26, 13, 12]

print ‘Before sorting : ‘, numlist

numlist.sort()

print ‘After sorting is : ‘, numlist

Sample output:
Before sorting : [6, 28, 11, 4, 20, 26, 13, 12]
After sorting is : [4, 6, 11, 12, 13, 20, 26, 28]
stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
print ‘Initial list is : ‘, stulist
stulist.sort()
print ‘After sorting, the list is : ‘, stulist

Sample output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
After sorting, the list is : [92.7, 2017, ‘CSE’, ‘Chennai’, ‘Ram’]

4.1.5 List Loop
The general way to traverse the elements of a list is with for loop. The following code shows

the use of for loop in accessing the elements of a list.

numlist = [1, 2, 3, 4, 5]

for i in numlist:

 print i

Output:
1
2
3
4
5

The following code illustrates the use of range and len functions in accessing the indices of
the elements of a list:

numlist = [1, 2, 3, 4, 5]

4.8 Problem Solving and Python Programming

for i in range(len(numlist)):

 print i

Output:
0
1
2
3
4

Here, len is a function that returns the number of elements in the list and range is a function
that returns a list of indices from 0 to n − 1, where n is the length of the list. The following code
gives an idea to traverse the list and to update the elements of a list with the help of range and len
functions in for loop:

numlist = [1, 2, 3, 4, 5]

for i in range(len(numlist)):

 numlist[i]=numlist[i]+10

for i in numlist:

 print i

Output:
11
12
13
14
15

A for loop over an empty list never executes the body and is shown in the following code:

numlist = []

for i in numlist:

 print ‘never executes’

4.1.6 Mutability
The list is a mutable data structure. This means that its elements can be replaced, inserted

and removed. A slice operator on the left side of an assignment operation can update single or
multiple elements of a list. New elements can be added to the list using append() method.

The following code replaces ‘Ram’ which is at index 0 in the stulist by ‘Priya’. The values
are shown in the output for both instances.

stulist = [‘Ram’, ‘Chennai’, 2017]

print ‘Before mutation ‘, stulist

Compound Data: Lists, Tuples, Dictionaries 4.9

stulist[0] = ‘Priya’

print ‘After mutation ‘, stulist

Output:
Before mutation [‘Ram’, ‘Chennai’, 2017]
After mutation [‘Priya’, ‘Chennai’, 2017]

4.1.7 Aliasing
When we create two lists, we get two objects as shown in the following code and the

corresponding state diagram (Figure 4.1):

list1=[1,2]

list2=[1,2]

print list1 is list2 # prints False, as list1 and list2 are not the same object

List 1 [1,2]

List 2 [1,2]

Figure 4.1. State Diagram

Here, the two lists list1 and list2 are equivalent since they have the same elements. But
they are not identical since they are not the same object. If two objects are identical, then they are
equivalent. But if two objects are equivalent, then they are not necessarily identical.

In the following code, there are two references to the same object. An object with more than
one reference has more than one name, so we say that the object is aliased.

list1=[1,2]

list2=list1

print list1 is list2 # prints True, as list1 and list2 are the same object

The state diagram for the above code is as shown in Figure 4.2:

List 1
 [1,2]

List 2

Figure 4.2. State Diagram

If the aliased object is mutable, modifications done in one object affect the other object
also. In the following code, list1 and list2 are aliased objects. Changes made in list1 affect list2 and
similarly, changes done in list2 affect list1.

4.10 Problem Solving and Python Programming

Sample Code

list1=[1,2]

list2=list1

print ‘List1 is :’, list1

print ‘List2 is :’, list2

list1[0]=10

print ‘List1 is :’, list1

print ‘List2 is :’, list2

list2[1]=20

print ‘List1 is :’, list1

print ‘List2 is :’, list2

Sample Output:
List1 is : [1, 2]
List2 is : [1, 2]
List1 is : [10, 2]
List2 is : [10, 2]
List1 is : [10, 20]
List2 is : [10, 20]

Though aliasing can be helpful, it may lead to errors. So, avoid aliasing in mutable objects.
To prevent aliasing in lists, a new empty list can be created and the contents of the existing list can
be copied to it, as given in the following code:

list1=[1,2] # Existing list

list2=[] # New and Empty list

for e in list1:

 list2.append(e)

print ‘List1 is :’, list1

print ‘List2 is :’, list2

list1[0]=10

print ‘After modification’

print ‘List1 is :’, list1

print ‘List2 is :’, list2

Compound Data: Lists, Tuples, Dictionaries 4.11

Output:
List1 is : [1, 2]
List2 is : [1, 2]
After modification
List1 is : [10, 2]
List2 is : [1, 2]

4.1.8 Cloning Lists
Assignment statements in Python do not copy objects. They simply create bindings between

two objects. For mutable sequences (like lists), a copy of an existing object may be required so that
one object can be changed without affecting another.

In lists, cloning operation can be used to create a copy of an existing list so that changes
made in one copy of list will not affect another. The copy contains the same elements as the original.

Method 1: list() function:
Built-in list() function can be used for cloning lists with the following syntax:

Newlistname = list(Oldlistname)

Sample Code:
oldlist = [10, 20, 30, 40, 50]
newlist = list(oldlist)
print ‘Old list is : ‘, oldlist
print ‘New list is : ‘, newlist
oldlist[0]=5
print ‘Old list is : ‘, oldlist
print ‘New list is : ‘, newlist

Sample Output:
Old list is : [10, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]
Old list is : [5, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]

Method 2: copy.copy() function:
Syntax:

Newlistname = copy.copy(Oldlistname)

copy.copy() is little slower than list() since it has to determine data type of old
list first.

4.12 Problem Solving and Python Programming

Sample Code:

import copy

oldlist = [10, 20, 30, 40, 50]

newlist = copy.copy(oldlist) # Returns a shallow copy of oldlist

print ‘Old list is : ‘, oldlist

print ‘New list is : ‘, newlist

oldlist[0]=5

print ‘Old list is : ‘, oldlist

print ‘New list is : ‘, newlist

Sample Output:
Old list is : [10, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]
Old list is : [5, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]

Method 3: copy.deepcopy() function:
Syntax

Newlistname = copy.deepcopy(Oldlistname)

copy.deepcopy() is the slowest and memory-consuming method.

Sample Code:
import copy
oldlist = [10, 20, 30, 40, 50]
newlist = copy.deepcopy(oldlist) # Returns a deep copy of oldlist
print ‘Old list is : ‘, oldlist
print ‘New list is : ‘, newlist
oldlist[0]=5
print ‘Old list is : ‘, oldlist
print ‘New list is : ‘, newlist

Sample Output:
Old list is : [10, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]
Old list is : [5, 20, 30, 40, 50]
New list is : [10, 20, 30, 40, 50]

Compound Data: Lists, Tuples, Dictionaries 4.13

copy() (also known as shallow copy) and deepcopy() differs in the usage of compound objects
that are objects containing other objects, like lists). copy() creates a new compound object first and
then inserts references to the objects of the original. deepcopy() constructs a new compound object
and then, recursively, inserts copies to the objects of the original. The following code illustrates the
use of deepcopy() for a compound (nested) list.

Sample Code:

import copy

oldlist = [1, 2, [‘a’,’b’]]

newlist = copy.deepcopy(oldlist)

print ‘Old list is : ‘, oldlist

print ‘New list is : ‘, newlist

newlist[0] = ‘c’

newlist[2][1] = ‘d’

print ‘Old list is : ‘, oldlist

print ‘New list is : ‘, newlist

Sample Output:
Old list is : [1, 2, [‘a’, ‘b’]]
New list is : [1, 2, [‘a’, ‘b’]]
Old list is : [1, 2, [‘a’, ‘b’]]
New list is : [‘c’, 2, [‘a’, ‘d’]]

4.1.9 List parameters
When a list is passed as a parameter to a function, the function gets a reference to the list. In

the following code, numlist is a list and it is passed as a parameter to my_insert() function. Within
my_insert(), it is referenced as t.

def my_insert(t): # function definition

 t.insert(1,15)

numlist = [10, 20, 30, 40, 50]

print ‘Before calling my_insert function : ‘, numlist

my_insert(numlist) # function call

print ‘After calling my_insert function : ‘, numlist

Here, the parameter t and the variable numlist are aliases for the same object. my_insert()
function inserts a new element 15 at index 1 in the list. This change is visible to the caller. The
elements of a list before and after calling my_insert() are given below as the output:

4.14 Problem Solving and Python Programming

Before calling my_insert function : [10, 20, 30, 40, 50]

After calling my_insert function : [10, 15, 20, 30, 40, 50]

The following program employs a function my_display() that creates and returns a new list.
Within my_display(), numlist is referenced as n.

Sample Code:

def my_display(n): # function definition

 return n[:]

 numlist = [10, 20, 30, 40, 50]

print ‘numlist is : ‘, numlist

newlist=my_display(numlist) # function call

print ‘newlist is : ‘, newlist

Sample Output:
numlist is : [10, 20, 30, 40, 50]
newlist is : [10, 20, 30, 40, 50]

The following program includes a function my_display() that creates and displays the
elements of a list.

Sample Code:

def my_display(n): # function definition

 nlist= n[:]

 print ‘Within a function : ‘, nlist

 numlist = [10, 20, 30, 40, 50]

print ‘numlist is : ‘, numlist

my_display(numlist) # function call

Sample Output:
numlist is : [10, 20, 30, 40, 50]
Within a function : [10, 20, 30, 40, 50]

4.1.10 Deleting list elements
To remove a list element, del operator can be used if an element to be deleted is known. In

the following code, the element ‘Chennai’ is deleted by mentioning its index in the del operator.

stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]

print ‘Initial list is : ‘, stulist

Compound Data: Lists, Tuples, Dictionaries 4.15

del stulist[1]

print ‘Now the list is : ‘, stulist

Output:
Initial list is : [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
Now the list is : [‘Ram’, 2017, ‘CSE’, 92.7]

pop() and remove() methods can also be used to delete list elements.

4.1.11 Python functions for list operations

1. cmp

Compares two lists and returns 0, if they are equal. Else, returns a nonzero vale.

Syntax: cmp(list1, list2)

Code Output
list1 = [10, ‘xyz’]
list2 = [20, ‘abc’]
list3 = [10, ‘xyz’]
print ‘Comparing list1 and list2 ‘, cmp(list1, list2)
print ‘Comparing list2 and list3 ‘, cmp(list2, list3)
print ‘Comparing list1 and list3 ‘,cmp(list1, list3)

Comparing list1 and list2 -1
Comparing list2 and list3 1
Comparing list1 and list3 0

1. len

Returns the total number of elements in a list.

Syntax: len(listname)

Code Output
stulist = [‘Ram’, ‘Chennai’, 2017, ‘CSE’, 92.7]
print ‘Length is : ‘, len(stulist) Length is : 5

2. max

Returns the largest item from the list

Syntax: max(listname)

3. min

Returns the smallest item from the list

Syntax: min(listname)

4.16 Problem Solving and Python Programming

Code Output
numlist = [6, 28, 11, 4, 20, 26, 13, 12]
print ‘Maximum is : ‘, max(numlist)
print ‘Minimum is : ‘, min(numlist)

Maximum is : 28
Minimum is : 4

stulist = [‘Anu’, ‘Chennai’, 2017, ‘CSE’, 92.7]
print ‘Maximum is : ‘, max(stulist)
print ‘Minimum is : ‘, min(stulist)

Maximum is : Chennai
Minimum is : 92.7

4. list

Converts a tuple into a list and returns a list.

Syntax: listname=list(tuplename)

Code Output
stu_tuple = (‘Anu’, ‘Chennai’, 2017, ‘CSE’, 92.7)
print ‘Tuple elements : ‘, stu_tuple

Tuple elements : (‘Anu’, ‘Chennai’,
2017, ‘CSE’, 92.7)

stulist = list(stu_tuple)
print ‘List elements : ‘, stulist

List elements : [‘Anu’, ‘Chennai’,
2017, ‘CSE’, 92.7]

4.1.12 List Comprehension
Comprehensions are constructs that allow sequences to be built from other sequences. It

provides a concise way to create lists. Python 2.0 introduced list comprehensions and Python 3.0
comes with dictionary and set comprehensions.

A list comprehension consists of the following parts:

 • An Input Sequence.

 • Variable representing members of the input sequence.

 • An Optional Predicate expression.

 • An Output Expression producing elements of the output list from members of the Input
Sequence that satisfy the predicate.

Syntax:
 [expression for item in list if conditional]

This is equivalent to:
for item in list:
 if conditional:
 expression
new_list = [expression(i) for i in old_list if filter(i)]

new_list is the resultant list. expression(i) is based on the variable used for each element in
the old list. If needed filter can be applied using if statement.

Compound Data: Lists, Tuples, Dictionaries 4.17

Example:

 from types import *

a_list = [1, ‘4’, 9, ‘a’, 0, 4]

squared_ints = [e**2 for e in a_list if type(e) == IntType]

print squared_ints

Sample output:
[1, 81, 0, 16]

Output
Expression

Input
Sequence

e**2 for e in a _list if type (e) == types.IntType

variable Optional Predicate

 • The iterator part iterates through each member e of the input sequence a_list.

 • The predicate checks if the member is an integer.

 • If the member is an integer then it is passed to the output expression, squared, to become
a member of the output list.

Example:
x=[I for I in range(10)]
print x
Sample Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
squares=[x**2 for x in range(10)]
print squares

Sample Output:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

str=[“this”, “is”, “an”, “example”]
items=[word[0] for word in str]
print items

Sample Output:
[‘t’, ‘i’, ‘a’, ‘e’]

4.18 Problem Solving and Python Programming

value=[x+y for x in [10,20,30] for y in [1,2,3]]
print value

Sample Output:
 [11, 12, 13, 21, 22, 23, 31, 32, 33]

This example, adds the values in list x to each value in list y.

4.2 TUPLES
A tuple is a collection of values of different types. Unlike lists, tuple values are indexed by

integers. The important difference is that tuples are immutable.

4.2.1 Advantages of Tuple over List
Tuples are like lists, so both of them are used in similar situations as well. However, there

are specific advantages of implementing a tuple over a list. The advantages of tuples over list are
listed below.

 • Tuples generally used for heterogeneous (different) datatypes and list for homogeneous
(similar) datatypes.

 • Tuples are immutable, so iterating through tuple is faster than with list. There is a slight
performance enhancement through list.

 • Tuple elements can be used as key for a dictionary. With list, this is not possible.

 • If you have data that doesn’t change, implementing it as tuple will guarantee that it
remains write-protected.

As we have seen before, a tuple is a comma-separated values.

Syntactically, a tuple can be represented like this:

>>> t = ‘a’, ‘b’, ‘c’, ‘d’, ‘e’

Even if it is not necessary to parentheses to enclose tuples, it is so.

t1 = (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

t2=(1,2,3,4,5)

The empty tuple can be created by simply using the parentheses.

t3=()

The tuple with one element can be created as follows. It takes one comma after the element.

t4=(‘s’,)

print type(t4)

Output:
<type ‘tuple’>

Compound Data: Lists, Tuples, Dictionaries 4.19

t5 = ‘a’,

print type(t5)

Output:
<type ‘tuple’>

A value of tuple in parentheses is not a tuple. The following program code explain this.

t2 = (‘a’)

print type(t2[1])

Output:
<type ‘str’>

The built –in function tuple can be used to create tuple. To create an empty tuple no arguments
is passed in the built-in function.

t = tuple() #tuple is the built-in function

print t

Output:
()

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of
the sequence:

 t = tuple(‘hello’)

print t

Output:
(‘h’, ‘e’, ‘l’, ‘l’, ‘o’)

t = tuple(’12345’)

print t

Output:
(‘1’, ‘2’, ‘3’, ‘4’, ‘5’)

Program to illustrate the tuple creation for single element
only parentheses is not enough

tup1 = (“hai”)

print type(tup1)

need a comma at the end

4.20 Problem Solving and Python Programming

tup2 = (“hai”,)

print type(tup2)

parentheses is optional

tup3 = “hai”,

print type(tup3)

Output:
<class ‘str’>
<class ‘tuple’>
<class ‘tuple’>

4.2.2 Accessing values
To access the tuple elements slicing (bracket operator []) operator along with index or

indices is used.

t1 = (‘C’, ‘C++’, ‘python’, 1997, 2000);

t2 = (1, 2, 3, 4, 5, 6, 7);

t3= (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

print “tup1[0]: “, tup1[0]

print “tup1[1]: “, tup1[1]

print “tup2[1:5]: “, tup2[1:5]

print “tup2[1:]: “, tup2[1:]

print t[0]

Output:
tup1[0]: C
tup1[1]: C++
tup2[1:5]: [2, 3, 4, 5, 6, 7]
a

Program to illustrate the accessing the tuple elements
t1 = [‘p’,’y’,’t’,’h’,’o’,’n’]

print t1[0]

print t1[5]

print t1[2]

print t1[-1]

print t1[-6]

Compound Data: Lists, Tuples, Dictionaries 4.21

TypeError: list indices must be integers, not float
#t1[2.0]
nested tuple
nest_tup = (“hello”, [8, 4, 6], (1, 2, 3))
nested index
print nest_tup[0][4]
nested index
Output: 4
print nest_tup[1][2]
print nest_tup[2][0]

Output:
p
n
t
n
p
o
6
1

4.2.3 Updating Tuples
Tuples are immutable means that the tuple values cannot be updated or changed. However,

the portions of existing tuples are added with a new tuple to create another tuple as the following
example demonstrates −

Consider the following tuple,

t3= (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

No elements can be modified. If you try to modify, you will get an error.

t3[1]= ‘B’

TypeError: ‘tuple’ object does not support item assignment

Instead of modifying an element in the tuple sequence, it is obvious to simply replace one
tuple with another:

t3 = (‘A’,) + t3 [1:]

print t

Output:
(‘A’, ‘b’, ‘c’, ‘d’, ‘e’)

4.22 Problem Solving and Python Programming

Here, the first element ‘a’ is replaced with ‘A’. A new tuple is created with the value ‘A’ is
combined with tuple t3 having index from 1 to the last element. The tuple value t3[0]=’a’ is replaced
by ‘A’.

4.2.4 Delete Tuple Elements
It is impossible to delete a single element in the tuple. There is, of course, nothing wrong

with putting together another tuple with the undesired elements discarded. To delete an entire tuple,
the keyword del is used. For example:

t1 = (‘C’, ‘C++’, ‘python’, 1997, 2000);

print t1

del t1

print “After deleting : “

print t1

Output:
(‘C’, ‘C++’, ‘python’, 1997, 2000)

After deleting :

Traceback (most recent call last):

 File “main.py”, line 5, in

 print t1

NameError: name ‘t1’ is not defined

Program for updating and deleting tuples
t1 = (2, 3, 4, [5, 6])

print t1

we cannot change an element

TypeError: ‘tuple’ object does not support item assignment

#my_tuple[1] = 6; creates error

but item of mutable element can be changed

t1[3][0] = 7

print t1

tuples can be reassigned

t1 = (‘h’,’e’,’l’,’l’,’o’)

print t1

Concatenation

Compound Data: Lists, Tuples, Dictionaries 4.23

print (1, 2, 3) + (4, 5, 6)

Repetition operator

Print (“Repeat”,) * 3

#delete tuple

del t1

print t1

Output:
(2, 3, 4, [5, 6])
(2, 3, 4, [7, 6])
(‘h’, ‘e’, ‘l’, ‘l’, ‘o’)
(1, 2, 3, 4, 5, 6)
(‘Repeat’, ‘Repeat’, ‘Repeat’)
Traceback (most recent call last):
File “<stdin>”, line 25, in <module>
print(t1)
NameError: name ‘t1’ is not defined

4.2.5 Tuple assignment
Tuple assignment makes it possible to create and assign values for more than one tuple in a

single statement itself. For example,

x, y = 1, 2

print x

print y

Output:
1
2

In general to swap the values of two variables, a temporary variable is used. For example
to swap x and y:

temp = x

x = y

y = temp

This solution is clumsy; the tuple assignment is more elegant.

a, b = b, a

In the expression, the left side is a tuple of variables; the right side is a tuple of expressions.
Each value is assigned to its respective variable. All the expressions on the right side are evaluated
before any of the assignments.

4.24 Problem Solving and Python Programming

The number of variables on the left side and the number of values on the right must be the
same:

a, b = 1, 2

In this a is assigned with 1 and b is assigned with 2.

For the assignment,

a, b= 1,2,3

This statement creates error, as

ValueError: too many values to unpack

The right side of the assignment statement can be any kind of sequence (string, list or tuple).
For example, to split an email address into a user name and a domain, the split function can be used
as follows.

mail_id = ‘students@python.org’

uname, domain = mail_id.split(‘@’)

print uname

print domain

Output:
students
python.org

In this, the split function is used to separate the value into two parts. The return value from
the split function is a list with two elements; the first element is assigned to uname, the second is
assigned to domain.

Program to illustrate tuple creation and assignment
empty tuple

t1 = ()

print t1

tuple having integers

t2 = (1, 2, 3)

print t2

tuple with mixed datatypes

t3 = (1, “Hello”, 2.4)

print t3

nested tuple

t4 = (“World”, [8, 4, 6], (1, 2, 3))

Compound Data: Lists, Tuples, Dictionaries 4.25

print t4
tuple can be created without parentheses (called tuple packing)
t5 = 3, 4.6, “ABC”
print t5
tuple unpacking is also possible
#tuple assignment
x, y, z = t5
print x
print y
print z

Output:
 ()
(1, 2, 3)
(1, ‘Hello’, 2.4)
(‘World’, [8, 4, 6], (1, 2, 3))
(3, 4.6, ‘ABC’)
3
4.6
ABC

4.2.6 Tuple Methods
In python methods for adding items and deleting items are not available. The methods

available are count and index.

 • count(x) method returns the number of occurrences of x

 • index(x) method returns index of the first occurrence of the item x.

Program for count and index methods
t1 = (‘p’,’y’,’t’,’h’,’o’,’n’,’p’,’r’,’o’,’g’,’r’,’a’,’m’)
Count
print(t1.count(‘p’))
Index
print t1.index(‘y’)
print t1.index(‘h’)

Output:
2
1
3

4.26 Problem Solving and Python Programming

4.2.7 Other Tuple Operations
There are some other tuple operations such as tuple membership test and iterating through a

tuple. Tuple Membership Test operation can test if an item exists in a tuple or not, using the keyword
in and not in. Iterating through a Tuple operation is performed using a for loop in which we can
iterate through each item in a tuple.

Simple program to illustrate tuple operations
t1 = (‘p’,’y’,’t’,’h’,’o’,’n’)

In operation

print(‘y’ in t1)

Output: False

print(‘m’ in t1)

Not in operation

print(‘h’ not in t1)

print(‘a’ not in t1)

for lang in (‘C’,’C++’):

 print(“Progrmming-languages”,lang)

Output:
True
False
False
True
Progrmming-languages C
Progrmming-languages C++

4.2.8 Tuples as return values
In general a function can return only one value, but if the return value is a tuple, then it

is returning multiple values. For example, to divide two integers and compute the quotient and
remainder, normally it is used to compute x/y and then x%y. But using python, it is better to compute
them both at the same time. The following code explains this

t = divmod (7, 3)

print t

Output:
(2, 1)

Here, the built-in function divmod is used which takes two arguments and returns a tuple of
two values, the quotient and remainder. The result can be stored as a tuple as in previous program
code. Or tuple assignment can be used to store the elements separately as in the following code.

Compound Data: Lists, Tuples, Dictionaries 4.27

quot, rem = divmod(7, 3)

print quot

print rem

Output:
2
1

One more example to explain tuples as return values. The built-in functions min and max
are used to find the smallest and largest elements of a sequence. The function min_max computes
both and returns a tuple of two values.

Here is an example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

4.2.9 Built-in Functions with Tuple

Function Description
all() Return True if all elements of the tuple are true (or if the tuple is empty).

any() Return True if any element of the tuple is true. If the tuple is empty, return
False.

enumerate() Return an enumerate object. It contains the index and value of all the items of
tuple as pairs.

len() Return the length (the number of items) in the tuple.
max() Return the largest item in the tuple.
min() Return the smallest item in the tuple

sorted() Take elements in the tuple and return a new sorted list (does not sort the tuple
itself).

sum() Return the sum of all elements in the tuple.
tuple() Convert an iterable (list, string, set, dictionary) to a tuple.

4.2.10 Variable-length argument tuples
The functions can take a variable number of arguments for implementation. A argument

name that starts with (*) gathers the several arguments into a tuple. For example, printall
function takes any number of arguments and prints them:

Example:

def printall (*args): # the function takes several args

print args

4.28 Problem Solving and Python Programming

The argument name may be anything, but args is conventional. Here is the example to show
how the function printall works:

printall(1, 2.0, ‘3’)

(1, 2.0, ‘3’)

The complement of gather is scatter. To pass a sequence of values to a function as multiple
arguments, the * operator can be used. For example, consider the divmod function which takes
exactly two arguments; doesn’t work with a tuple of variable length arguments:

t = (7, 3)

divmod(t)

Output:
TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

Instead of the above code, the code given below can be used for variable length arguments.

divmod(*t)

(2, 1)

There are some other built-in functions which use variable-length argument tuples.

The max and min functions take any number of arguments:

max(1,2,3)

Output:
3

The sum function does not take variable length arguments. It gives error.

sum(1,2,3)

Output:
TypeError: sum expected at most 2 arguments, got 3

4.2.11 Comparing tuples
With relational operators it is possible to work with tuples and other sequences. To compare

two elements, Python starts by comparing the first element from each sequence. If the elements
are equal, it goes on to the next elements, and so on, until it finds an element that is different.
Subsequent elements are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

Compound Data: Lists, Tuples, Dictionaries 4.29

The sort function also works in the same way. It sorts primarily by first element. But if there
is a tie, it sorts by second element, and so on. This feature lends itself to a pattern called DSU. DSU
stands for Decorate, Sort, Undecorate.

DSU:
Decorate a sequence by building a list of tuples with one or more sort keys preceding the

elements from the sequence,

Sort the list of tuples, and Undecorate by extracting the sorted elements of the sequence.

For example, to sort a list of words from longest to shortest:
def sort_by_length (words):

t = []

for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = []

for length, word in t:

res.append(word)

return res

The first loop builds a list of tuples, where each tuple is a word preceded by its length.
The sort function compares the first element, and its length first, and only considers the second
element to break ties. The keyword argument reverse=True tells sort to go in decreasing order. The
second loop traverses the list of tuples and builds a list of words in descending order of length. The
following program explains the comparison function.

t1, t2 = (123, ‘xyz’), (456, ‘abc’)

print cmp (t1, t2)

print cmp (t2, t1)

t3 = t2 + (786,)

print cmp (t2, t3)

print cmp (t3, t2)

t3, t4= (‘hello’, 3) , (‘hello’, 3)

print cmp (t3, t4)

print cmp (t4,t3)

t5,t6 = (3, ‘hai’), (‘hai’,3)

print cmp (t5, t6)

print (t6, t5)

4.30 Problem Solving and Python Programming

Output:
-1
 1
-1
 1
 0
 0
-1
 1

4.3 DICTIONARIES
Dictionary is an unordered collection of items. It is similar to a list, but in list elements can

be accessed using index which must be an integer. In Dictionary we access values by looking up a
key instead of an index. A key can be any string or number. For example, dictionaries can be used
for things like phone books (pairing a name with a phone number), login pages (pairing an e-mail
address with a username).

Each item in dictionary has a key: value pair and the list of items are enclosed inside curly
braces {} separated by comma. The values can be of any data type and can repeat; keys must be of
immutable types (string, number or tuple with immutable elements) and must be unique.

Dictionaries in Python are implemented using hash table. It is an array whose indexes are
obtained using a hash function on the keys. A hash function takes a key value and returns hash
value, an integer. This hash value is used in the dictionary to store and lookup key-value pairs. So
keys in dictionary must be hashable.

The following code is a simple example which creates an empty dictionary.

empty dictionary

my_dict = {}

print my_dict

Sample Output:
{}

The following dictionary uses integer as keys and string as values.

dictionary with integer keys

my_dict = {1: ‘apple’, 2: ‘ball’}

print my_dict

print my_dict[2]

Compound Data: Lists, Tuples, Dictionaries 4.31

Sample Output:
{1: ‘apple’, 2: ‘ball’}
ball

The following dictionary uses mixed keys. For item 1, both key and its corresponding value
are string. In item 2, the key is an integer and the value is a list.

dictionary with mixed keys

my_dict = {‘name’: ‘John’, 1: [2, 4, 3]}

print my_dict

print my_dict[‘name’]

print my_dict[1]

Sample Output:
{1: [2, 4, 3], ‘name’: ‘John’}
John
[2, 4, 3]

In the output, the order of the key-value pairs is not the same. In general, the order of items
in dictionary is unpredictable. In the following example, using list, a mutable data type as key
results in error message.

dic = { [1,2,3]:”abc”}

Traceback (most recent call last):

File “main.py”, line 1, in <module>

dic = { [1,2,3]:”abc”}

TypeError: unhashable type: ‘list’

Tuple, an immutable data type can be used as key, which is shown in following example.

my_dic = { (1,2,3):”abc”, 3.14:”abc”}

print my_dic

Sample Output:
{3.14: ‘abc’, (1, 2, 3): ‘abc’}

An exception will be raised when we try to access a key that not exist in dictionary. In the
following example, accessing my_dict[2] results in an error, as the key 2 not exist in dictionary.

my_dict = {‘name’: ‘John’, 1: [2, 4, 3]}

print my_dict[2]

4.32 Problem Solving and Python Programming

Sample Output:
Traceback (most recent call last):
File “main.py”, line 2, in <module>
 print my_dict[2]
KeyError: 2

Dictionaries can also be created using the dict() function.

using dict()

my_dict = dict({1:’apple’, 2:’ball’})

print my_dict

Sample Output:
{1: ‘apple’, 2: ‘ball’}

4.3.1 Built-in Dictionary Functions & Methods
Built-in methods or functions that are available with dictionary are tabulated below.

Function/Method Description
len(dict) Returns the length of dictionary which is equal to

number of pairs in the dictionary.
cmp(dict1,dict2) Compare items of two dictionaries
sorted(dict) Returns sorted list of keys in dictionary
dict.clear() Remove all items from dictionary
dict.copy() Returns a shallow copy of dictionary
dict.fromkeys(seq[, v]) Return a new dictionary with keys from seq and value

equal to v
dict.get(key) Returns the value of key. If key does not exists, it returns

None
dict.pop(key) Remove the item with key and returns its value.

KeyError occurs when key is not found

dict.popitem() Remove and return an arbitary item (key, value). Raises
KeyError if the dictionary is empty.

dict.items() Returns a list of dict’s (key, value) tuple pairs

dict.keys() Returns list of dictionary dict’s keys

dict1.update(dict2) Update the dictionary dict1 with the key/value pairs
from dict2, overwriting existing keys.

4.3.2 Access, update, and add elements in dictionary
Key can be used either inside square brackets or with the get() method. The difference while

using get() is that it returns None instead of KeyError, if the key is not found. Dictionary is mutable.

Compound Data: Lists, Tuples, Dictionaries 4.33

So we can add new items or change the value of existing items. If the key is present, its value gets
updated. Else a new key:value pair is added to dictionary.

my_dict={‘name’:’Ram’,’age’:21}

print my_dict # display all items

print my_dict.get(‘name’) # Retrieves the value of name key

my_dict[‘age’]=23 # update value

print my_dict

my_dict[‘dept’]=’CSE’ # add item

print my_dict

Sample Output:
{‘age’: 21, ‘name’: ‘Ram’}
{‘age’: 23, ‘name’: ‘Ram’}
{‘dept’: ‘CSE’, ‘age’: 23, ‘name’: ‘Ram’}

4.3.3 Delete or remove elements from a dictionary

A particular item in a dictionary can be removed by using the method pop(). This method
removes as item with the provided key and returns the value. The method, popitem() can be used to
remove and return an arbitrary item (key, value) from the dictionary. All the items can be removed
at once using the clear() method.

squares={1:1,2:4,3:9,4:16,5:25}

print(squares.pop(3)) # remove a particular item

print squares

print (squares.popitem()) # remove an arbitrary item

print squares

del squares[5] # delete a particular item

squares.clear() # remove all items

print squares

Sample Output:
9
{1: 1, 2: 4, 4: 16, 5: 25}
(1, 1)
{2: 4, 4: 16, 5: 25}
{2: 4, 4: 16}
{}

4.34 Problem Solving and Python Programming

We can also use the del keyword to remove individual items or the entire dictionary itself.
If we try to access the deleted dictionary, it will raise an Error.

del squares # delete the dictionary itself

print squares #throws error

Traceback (most recent call last):

File “main.

py”, line 11, in <module>

print squares NameError: name ‘squares’ is not defined

4.3.4 Sorting a Dictionary

The items in dictionary can be sorted using sorted() function. In the following example,
fromkeys() function is used to create a dictionary from sequence of values. The value 0 is assigned for
all keys. Each item is accessed iteratively using for loop that iterate though each key in a dictionary.

marks={}.fromkeys([‘Math’,’English’,’Science’],0)

print marks

for item in marks.items():

 print item

print list(sorted(marks.keys()))

Sample Output:
{‘Maths’: 0, ‘Science’: 0, ‘English’: 0}
(‘Maths’, 0)
(‘Science’, 0)
(‘English’, 0)
[‘English’, ‘Maths’, ‘Science’]

4.3.5 Iterating Through a Dictionary
Using a for loop we can iterate though each key in a dictionary.

squares={1:1,2:4,3:9,4:16,5:25}

for i in squares:

 print(squares[i])

Sample Output:
1
4
9
16
25

Compound Data: Lists, Tuples, Dictionaries 4.35

4.3.6 Reverse Lookup
Lookup is the process of finding the corresponding value for the given key from dictionary.

It’s easy to find the value given a key to a python dictionary.

value=dict[key]

Whereas, reverse lookup is the process of finding the key for a given value. There is no
direct method to handle reverse lookup. The following function takes a value and returns the first
key that map to that value.

def get_Value(dic,value):
 for name in dic:
 if dic[name] == value:
 return name
 raise ValueError
squares={1:1,2:4,3:9,4:16,5:25}
print get_Value(squares,4) # successful reverse lookup

Sample Output:
2

In this example, raise keyword is used to raise/activate an exception. ValueError indicates
that there is something wrong with value of parameter. On unsuccessful reverse lookup, when the
value is not in the dictionary, the exception ValueError is raised. Unsuccessful reverse lookup result
in following error.

print get_Value(squares,6) # unsuccessful reverse lookup
Traceback (most recent call last):
File “main.py”, line 7, in <module>
print get_Value(squares,6)
File “main.py”, line 5, in get_Value
raise ValueError
ValueError

4.3.7 Inverting a Dictionary
A dictionary can be inverted with list values. For example, if you were given a dictionary

that maps from child to parent, you might want to invert it; that is, create a dictionary that maps
from parent to children. Since there might be several children with the same parent each value in the
inverted dictionary should be a list of children.

def invert_dict_nonunique(d):
 newdict = {}
 for k, v in d.iteritems():
 newdict.setdefault(v, []).append(k)

4.36 Problem Solving and Python Programming

 return newdict
d = {‘child1’: ‘parent1’,
 ‘child2’: ‘parent1’,
 ‘child3’: ‘parent2’,
 ‘child4’: ‘parent2’,
 }
print invert_dict_nonunique(d)

Sample Output:
{‘parent2’: [‘child3’, ‘child4’], ‘parent1’: [‘child1’, ‘child2’]}

In this example the loop iterates through dictionary items where k represents key and v
represents value. The setdefault() method will set newdict[v]=[] and append the key value to list..

As we mentioned earlier, the keys in dictionaries have to hashable. It works correctly only
when keys are immutable. For example, if key is a list and to store a key-value pair Python will hash
the key and store it in corresponding location. If that key is modified, it would be hashed to different
location. In this case, we will have two entries for the same key or might be failed to locate a key.
Either way, the dictionary wouldn’t work correctly. Since lists and dictionaries are mutable, they
can’t be used as keys, but they can be used as values.

4.3.8 Memoization (Memos)
Memoization effectively refers to remembering results of method calls based on the method

inputs and then returning the remembered result rather than computing the result again.

For example, consider the recursive version to calculate the Fibonacci numbers. The
following code to compute Fibonacci series has an exponential runtime behavior.

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

The runtime behavior of this recursive version can be improved by adding a dictionary to
memorize previously calculated values of the function.

def memoize(f):
 memo = {}
 def helper(x):
 if x not in memo:
 memo[x] = f(x)

Compound Data: Lists, Tuples, Dictionaries 4.37

 return memo[x]
 return helper
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)
fib = memoize(fib)
print(fib(6)) # output the 6th number in Fibonacci series (series starts from 0th
position)

Sample Output:
8

memoize() takes a function as an argument. The function memorize() uses a dictionary
“memo” to store the function results. Though the variable “memo” as well as the function “f” are
local to memoize, they are captured by a closure through the helper function which is returned as a
reference by memoize(). So, the call memoize(fib) returns a reference to the helper() which is doing
what fib() would do on its own plus a wrapper which saves the calculated results. For an integer ‘n’
fib(n) will only be called, if n is not in the memo dictionary. If it is in it, we can output memo[n] as
the result of fib(n).

Memo = {}
def helper (x):

if x not in memo:
memo[x]=f(x)

return memo[x]
return helper

if n==0:
return 0

elseif n==1:
return 1

else:
return fib(n-1) + fib(n-2)

Executing;
fib = memoize(fib)

helper is returned

memoize

fib

if x not in memo:
memo [x]= f(x)

return memo [x]

4.38 Problem Solving and Python Programming

After having executed fib = memoize(fib) fib points to the body of the helper function,
which had been returned by memoize. The decorated Fibonacci function is called in the return
statement return fib(n-1) + fib(n-2), this means the code of the helper function which had been
returned by memorize.

4.4 ILLUSTRATIVE PROGRAMS
4.4.1 Python program to sort a list of elements using the selection sort algorithm

Selection sort is a simple sorting algorithm. It is an in-place comparison-based algorithm
in which the list is divided into two parts: the sorted part at the left end and the unsorted part at the
right end. Initially, the sorted part is empty and the unsorted part is the entire list.

Selection sort algorithm starts by comparing first two elements of an array and swapping if
necessary, i.e., if you want to sort the elements of array in ascending order and if the first element
is greater than second then, you need to swap the elements but, if the first element is smaller than
second, leave the elements as it is. Then, again first element and third element are compared and
swapped if necessary. This process goes on until first and last element of an array is compared.
This completes the first step of selection sort. The working of selection sort algorithm is shown in
Figure.4.3.

20 12 10 15 2

12 20 10 15 2

10 20 12 15 2

10 20 12 15 2

2 20 12 15 10

2 20 12 15 10

2 12 20 15 10

2 12 20 15 10

2 10 20 15 12

2 10 20 15 12

2 10 15 20 12

2 10 12 20 15

2 10 12 20 15

2 10 12 15 20

Step 1 Step 2 Step 3 Step 4

Figure 4.3. Selection Sort

This algorithm is not suitable for large data sets as its average and worst case complexities
are of Ο(n2), where n is the number of items.

arr=[]
n=input(‘Enter number of elements’)
for i in range(0,n):
 x=int(input(‘Enter number’))
 arr.insert(i,x)
 i+=1
for i in range(len(arr)):
 for j in range(i, len(arr)):

Compound Data: Lists, Tuples, Dictionaries 4.39

 if(arr[i] > arr[j]):
 arr[i], arr[j] = arr[j], arr[i]
print ‘Sorted List:’, arr

Sample input/output:
Enter no5
enter no.12
 enter no. 2
enter no.23
enter no. 4
enter no.5
Sorted List:
[2, 4, 5, 12, 23]

4.4.2 Python program to sort a list of elements using the insertion sort algorithm
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item

at a time. Here, a sub-list is maintained which is always sorted. The array is searched sequentially and
unsorted items are moved and inserted into the sorted sub-list (in the same array). This algorithm is
suitable for small data sets. But it is much less efficient on large lists than more advanced algorithms
such as quicksort, heapsort, or merge sort. The worst case complexity of the algorithm is of Ο(n2),
where n is the number of items.

12 3 1 5 8

3 12 1 5 8

11 3 12 5 8

12 3 5 12 8

12 3 5 8 12

Checking second element of array with element
before it and inserting it in proper position. In
this case, 3 is inserted in position of 12.

Checking third element of array with element
before it and inserting it in proper position. In
this case, 1 is inserted in position of 3.

Checking fourth element of array with element
before it and inserting it in proper position. In
this case, 5 is inserted in position of 12.

Checking fifth element of array with element
before it and inserting it in proper position. In
this case, 8 is inserted in position of 12.

Sorted Array in Ascending Order

Step 1

Step 2

Step 3

Step 4

Figure 4.4. Insertion Sort

def insertionsort(list):

 for i in range(1,len(list)):

 temp=list[i]

4.40 Problem Solving and Python Programming

 j=i-1

 while temp<+list[j] and j>=0:

 list[j+1]=list[j]

 j=j-1

 list[j+1]=temp

 return list

arr=[]

n=input(‘Enter number of elements’)

for i in range(0,n):

 x=int(input(‘Enter number’))

 arr.insert(i,x)

 i+=1

print insertionsort(arr)

Sample input/output:
Enter number of elements5
Enter number12
Enter number23
Enter number4
Enter number16
Enter number34
[4, 12, 16, 23, 34]

4.4.3 Python program to sort a list of elements using the merge sort algorithm

Merge sort is a sorting technique based on divide and conquer technique. It first divides the
array into equal halves and then combines them in a sorted manner. The basic steps involved in
merge sort algorithm are as follows: Given an array A.

1. Divide

If q is the half-way point between p and r, then we can split the subarray A[p..r] into two
arrays A[p..q] and A[q+1, r].

2. Conquer

In the conquer step, we try to sort both the subarrays A[p..q] and A[q+1, r]. If we haven’t yet
reached the base case, we again divide both these subarrays and try to sort them.

Compound Data: Lists, Tuples, Dictionaries 4.41

3. Combine

When the conquer step reaches the base step and we get two sorted subarrays A[p..q] and
A[q+1, r] for array A[p..r], we combine the results by creating a sorted array A[p..r] from
two sorted subarrays A[p..q] and A[q+1, r].

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

27 38 3 43 9 82 10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

Figure 4.5. Merge Sort

As shown in Figure. 4.5, the merge sort algorithm recursively divides the array into halves
until we reach the base case of array with 1 element. After that, the merge function picks up the
sorted sub-arrays and merges them to gradually sort the entire array. The worst case complexity of
the algorithm is O(n log n), where n is the number of items.

def merge_sort(sequence):

 if len(sequence) < 2:

 return sequence

 m = len(sequence) / 2

 return merge(merge_sort(sequence[:m]), merge_sort(sequence[m:]))

def merge(left, right):

 result = []

 i = j = 0

 while i < len(left) and j < len(right):

 if left[i] < right[j]:

 result.append(left[i])

 i += 1

 else:

4.42 Problem Solving and Python Programming

 result.append(right[j])

 j += 1

 result += left[i:]

 result += right[j:]

 return result

print merge_sort([5, 2, 6, 8, 5, 8, 1])

Sample output:
[1, 2, 5, 5, 6, 8, 8]

4.4.4 Python program to sort a list of elements using the Quick sort algorithm
Like Merge Sort, Quick Sort is a Divide and Conquer algorithm. It picks an element as

pivot and partitions the given array around the picked pivot. The pivot element can be selected using
following different ways.

(1) Always pick first element as pivot.

(2) Always pick last element as pivot.

(3) Pick a random element as pivot.

(4) Pick median as pivot.

The runtime of the algorithm varies based on the pivot selected. The basic idea behind this
algorithm is as follows.

1. Pick one element in the array, which will be the pivot.

2. Make one pass through the array, called a partition step, re-arranging the entries so that:

i) the pivot is in its proper place.

ii) entries smaller than the pivot are to the left of the pivot.

iii) entries larger than the pivot are to its right.

3. Recursively apply quick sort to the part of the array that is to the left of the pivot,
and to the right part of the array.

The steps involved in quick sort algorithm are listed below and can be understand easily
using the example shown in Figure.4.6.

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Compound Data: Lists, Tuples, Dictionaries 4.43

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

Step 8 − if left ≥ right, the point where they met is new pivot

54 53 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

Leftmark and rightmark will
converge on split point

26<54 move to right 93>54
stop

now rightmark 20<54 stop

exchange 20 and 93

77 > 54 stop
44 < 54 stop

exchange 77 and 44

77 > 54 stop
31 < 54 stop

rightmark < leftmark
split point found

exchange 54 and 31leftmark

until they cross

rightmarkleftmark

rightmarkleftmark

54 26 93 17 77 31 44 55 20

rightmarkleftmark

54 26 20 17 77 31 44 55 93

rightmarkleftmark

54 26 20 17 77 31 44 55 93

rightmarkleftmark

54 26 20 17 44 31 77 55 93

Now continue moving leftmark and rightmark

rightmark

54 26 93 17 77 31 44 55 20 54 will be the first pivot value

Figure 4.6. Quick Sort

divide part of the algorithm

def partition(myList, start, end):

 pivot = myList[start]

 left = start+1

 right = end

 done = False

 while not done:

4.44 Problem Solving and Python Programming

 while left <= right and myList[left] <= pivot:

 left = left + 1

 while myList[right] >= pivot and right >=left:

 right = right -1

 if right < left:

 done= True

 else:

 # swap places

 temp=myList[left]

 myList[left]=myList[right]

 myList[right]=temp

 # swap start with myList[right]

 temp=myList[start]

 myList[start]=myList[right]

 myList[right]=temp

 return right

conquer part of the quicksort routine

def quicksort(myList, start, end):

 if start < end:

 # partition the list

 pivot = partition(myList, start, end)

 # sort both halves

 quicksort(myList, start, pivot-1)

 quicksort(myList, pivot+1, end)

 return myList

List = [54,26,93,17,77,31,44,55,20]

print quicksort(List)

Sample Output:
[17, 20, 26, 31, 44, 54, 55, 77, 93]

4.4.5 Write a Python program to create a histogram from a given list of integers.
def histogram(items):

 for n in items:

Compound Data: Lists, Tuples, Dictionaries 4.45

 output = ''

 times = n

 while(times > 0):

 output += '*'

 times = times - 1

 print(output)

histogram([2, 3, 6, 5])

Sample Output:
**

4.46 Problem Solving and Python Programming

TWO MARKS QUESTION & ANSWER

1. How will you access the elements of a list in Python?

To access the element(s) of a list, subscript operator [] (also known as slicing operator) is
used. Index within [] indicates the position of the particular element in the list and it must
be an integer expression. For eg, in a list stulist = [‘Ram’, ‘Chennai’, 2017], stulist[1] returns
Chennai as its output.

2. What is the use of + and * operators in Python lists?

In Python lists, + represents concatenation operation and * represents repetition operation.

Eg:

a=[10, 20, 30]

b=[40, 50]

c=a+b

print c

d=c*2

print d

Output:

 [10, 20, 30, 40, 50]

 [10, 20, 30, 40, 50, 10, 20, 30, 40, 50]

3.	 Define	List	slice.

A part of a list is called list slice. The operator [m:n] returns the part of the list from mth index
to nth index, including the element at mth index but excluding the element at nth index.

 • If the first index is omitted, the slice starts at the beginning of the string.

 • If the second index is omitted, the slice goes to the end of the string.

 • If the first index is greater than or equals to the second, the slice is an empty string.

 • If both indices are omitted, the slice is a given string itself.

4. Mention some of the methods of Python lists.

 • append() - to add element to the end of specified list

 • count() - to count the number of occurrences of an element in a specified list

 • extend() – to append the contents of secondlist to the firstlist

 • insert() – to Insert the given element at the given index in a specified list

Compound Data: Lists, Tuples, Dictionaries 4.47

5. Can we change the elements of Python list?

Yes, the elements of Python list can be replaced, inserted and removed (List is a mutable data
structure). A slice operator on the left side of an assignment operation can update single or
multiple elements of a list. New elements can be added to the list using append() method.

6. What do you mean by list cloning?

In lists, cloning operation creates a copy of an existing list so that changes made in one copy of
list will not affect another. The copy contains the same elements as the original.

How will you convert a string to a list in python?

list(s) − Converts a string s to a list.

Eg:

s=’abc’

print s

print list(s)

Output:

 abc

 [‘a’, ‘b’, ‘c’]

7. What is the difference between del() and remove() methods of list?

To remove a list element, we can use either the del statement if we know exactly which
element(s) we are deleting or the remove() method if we do not know.

8. How do you remove duplicates from a list?

Steps:

(a) sort the list.

(b) scan the list from the end.

(c) while scanning from right-to-left, delete all the duplicate elements from the list

9. Differentiate append() and extend() methods.

Both append() and extend() methods are the methods of list. These methods a re used to add
the elements at the end of the list.

 • append(element) – adds the given element at the end of the list which has called this
method.

 • extend(another-list) – adds the elements of another-list at the end of the list which is
called the extend method.

10.	 Define	tuple.

A tuple is a collection of values of different types. Unlike lists, tuple values are indexed by
integers. The important difference is that tuples are immutable.

4.48 Problem Solving and Python Programming

Example:

t1 = (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

11. List any two tuple methods.

 • count(x) method returns the number of occurrences of x

 • index(x) method returns index of the first occurrence of the item x.

12.	 Define	Dictionary.

Dictionary is an unordered collection of items. In Dictionary we access values by looking
up a key instead of an index. A key can be any string or number. Dictionaries in Python are
implemented using hash table.

Example:

my_dict = {1: ‘apple’, 2: ‘ball’}

13. Compare lookup and reverse lookup.

Lookup is the process of finding the corresponding value for the given key from dictionary. It’s
easy to find the value given a key to a python dictionary.

value=dict[key]

Whereas, reverse lookup is the process of finding the key for a given value.

14.	 Define	Memoization.

Memoization effectively refers to remembering results of method calls based on the method
inputs and then returning the remembered result rather than computing the result again.

15. How will you access the elements of a list in Python?

To access the element(s) of a list, subscript operator [] (also known as slicing operator) is used.
Index within [] indicates the position of the particular element in the list and it must be an
integer expression. For eg, in a list stulist = ['Ram', 'Chennai', 2017], stulist[1] returns Chennai
as its output.

16. What is the use of + and * operators in Python lists?

In Python lists, + represents concatenation operation and * represents repetition operation.

Eg:

a=[10, 20, 30]

b=[40, 50]

c=a+b

print c

d=c*2

Compound Data: Lists, Tuples, Dictionaries 4.49

print d

Output:

 [10, 20, 30, 40, 50]

 [10, 20, 30, 40, 50, 10, 20, 30, 40, 50]

17.	Define	List	slice.

A part of a list is called list slice. The operator [m:n] returns the part of the list from mth index
to nth index, including the element at mth index but excluding the element at nth index.

 • If the first index is omitted, the slice starts at the beginning of the string.

 • If the second index is omitted, the slice goes to the end of the string.

 • If the first index is greater than or equals to the second, the slice is an empty string.

 • If both indices are omitted, the slice is a given string itself.

18. Mention some of the methods of Python lists.

 • append() - to add element to the end of specified list

 • count() - to count the number of occurrences of an element in a specified list

 • extend() – to append the contents of secondlist to the firstlist

 • insert() – to Insert the given element at the given index in a specified list

19. Can we change the elements of Python list?

Yes, the elements of Python list can be replaced, inserted and removed (List is a mutable data
structure). A slice operator on the left side of an assignment operation can update single or
multiple elements of a list. New elements can be added to the list using append() method.

20. What do you mean by list cloning?

In lists, cloning operation creates a copy of an existing list so that changes made in one copy of
list will not affect another. The copy contains the same elements as the original.

How will you convert a string to a list in python?

list(s) − Converts a string s to a list.

Eg:

s='abc'

print s

print list(s)

Output:

abc

['a', 'b', 'c']

4.50 Problem Solving and Python Programming

21. What is the difference between del() and remove() methods of list?

To remove a list element, we can use either the del statement if we know exactly which
element(s) we are deleting or the remove() method if we do not know.

22. How do you remove duplicates from a list?
Steps:

(a) sort the list.
(b) scan the list from the end.
(c) while scanning from right-to-left, delete all the duplicate elements from the list

23. Differentiate append() and extend() methods.

Both append() and extend() methods are the methods of list. These methods a re used to add
the elements at the end of the list.

 • append(element) – adds the given element at the end of the list which has called this
method.

 • extend(another-list) – adds the elements of another-list at the end of the list which is
called the extend method.

24.	Define	tuple.

A tuple is a collection of values of different types. Unlike lists, tuple values are indexed by
integers. The important difference is that tuples are immutable.

Example:

 t1 = ('a', 'b', 'c', 'd', 'e')

25. List any two tuple methods.

 • count(x) method returns the number of occurrences of x

 • index(x) method returns index of the first occurrence of the item x.

26.	Define	Dictionary.

Dictionary is an unordered collection of items. In Dictionary we access values by looking
up a key instead of an index. A key can be any string or number. Dictionaries in Python are
implemented using hash table.

Example:

my_dict = {1: 'apple', 2: 'ball'}

27. Compare lookup and reverse lookup.

Lookup is the process of finding the corresponding value for the given key from dictionary. It's
easy to find the value given a key to a python dictionary.

value=dict[key]

Whereas, reverse lookup is the process of finding the key for a given value.

Compound Data: Lists, Tuples, Dictionaries 4.51

28.	Define	Memoization.

Memoization effectively refers to remembering results of method calls based on the method
inputs and then returning the remembered result rather than computing the result again.

29. What is a List?

A list is a sequence of any type of values and can be created as a set of comma-separated values
within square brackets. The values in a list are called elements or items. A list within another
list is called nested list.

30. What is meant by mutable data structure?

The list is a mutable data structure where we can make changes over the list. This means that
its elements can be replaced, inserted and removed. A slice operator on the left side of an
assignment operation can update single or multiple elements of a list. New elements can be
added to the list using append() method.

31. How to create copy of a list?

In lists, cloning operation can be used to create a copy of an existing list so that changes made
in one copy of list will not affect another. The copy contains the same elements as the original.

32. What is list Comprehension and what are its components?

Comprehensions are constructs that allow sequences to be built from other sequences. It
provides a concise way to create lists. Python 2.0 introduced list comprehensions and Python
3.0 comes with dictionary and set comprehensions.

 A list comprehension consists of the following parts:

 • An Input Sequence.

 • Variable representing members of the input sequence.

 • An Optional Predicate expression.

 • An Output Expression producing elements of the output list from members of the Input
Sequence that satisfy the predicate.

33. List the advantages of tuple over list.

 • Tuples generally used for heterogeneous (different) datatypes and list for homogeneous
(similar) datatypes.

 • Tuples are immutable, so iterating through tuple is faster than with list. There is a slight
performance enhancement through list.

 • Tuple elements can be used as key for a dictionary. With list, this is not possible.

 • If you have data that doesn’t change, implementing it as tuple will guarantee that it
remains write-protected.

4.52 Problem Solving and Python Programming

34. How do you create a dictionary which can preserve the order of pairs?

We know that regular Python dictionaries iterate over <key, value> pairs in an
arbitrary order, hence they do not preserve the insertion order of <key, value> pairs.
Python 2.7. introduced a new “OrderDict” class in the “collections” module and it provides the
same interface like the general dictionaries but it traverse through keys and values in an ordered
manner depending on when a key was first inserted.

Eg:

from collections import OrderedDict

d=OrderDict([('Company-id':1),('Company-Name':'Intellipaat')])

d.items() # displays the output as: [('Company-id':1),('Company-Name':'Intellipaat')]

35. When a dictionary does is used instead of a list?

Dictionaries – are best suited when the data is labelled, i.e., the data is a record with field names.
lists – are better option to store collections of un-labelled items say all the files and sub
directories in a folder.

Generally Search operation on dictionary object is faster than searching a list object.

36. How many kinds of sequences are supported by Python? What are they?

Python supports 7 sequence types. They are str, list, tuple, unicode, bytearray, xrange, and
buffer. where xrange is deprecated in python 3.5.X.

