
UNIT - 5

FILES, MODULES, PACKAGES

5.1	 FILES
Persistence

Most of the programs are transient which means that they run for a short time and produce
some output. But, when the program terminates, their data get vanished. When the program started
again, it starts with a clean slate. However, there are some other programs which are persistent that
they run for a long time (or all the time), maintain at least few of their data in permanent storage
(for example, a hard drive) and if the system set to shut down and restart, the program takes the data
from where it resides.

Examples of persistent programs are operating systems that run better whenever a computer
is on and web servers that run all the time and is waiting for requests to come in on the network.
One of the simplest ways for programs to maintain their data is by reading and writing text files.

5.1.1	 Reading and writing Operation
Standard input and output through input functions such as input () and raw_input() and

output function print statement are used in file operation.

The raw_input Function:
The raw_input([prompt]) function reads one line from standard input and returns it as a

string (leaving the trailing newline).

s = raw_input(“Enter your input: “);

print “ Entered input is : “, s

Output:
Enter your input: Hello Python
Received input is : Hello Python

The input Function
The input([prompt]) function is similar to raw_input, except that it assumes the input as a

valid Python expression and returns the evaluated result.

s = input(“Enter your input: “);

print “ The output is : “, str

5.2 Problem Solving and Python Programming

Output:
Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]

Now, we will see how to use actual data files. A text file is a sequence of characters stored on
a permanent storage medium such as hard drive, flash memory, or CD-ROM. Python offers some
basic functions and methods necessary to manipulate files by default. The file manipulation can be
done using a file object. The basic file operations are open, close, read and write files.

The open Function

To read or write a file, it is necessary to open it using Python’s built-in function named
open() function. The open() function creates a file object that could be used to call other methods
associated with it. The syntax for open() function is shown below.

Syntax

fileobject = open(file_name [, access_mode][, buffering])

The parameters are explained below:

•• file_name: The file_name argument is a string value that contains the name of the file
to access.

•• access_mode: The access_mode denotes the mode in which the file has to be opened
(read, write, append, etc). A complete list of possible values is mentioned below in the
table. This parameter is optional and the default file access mode is read (r).

•• buffering: If the buffering value is set to 0, then there is no buffering takes place. If
the buffering value is 1, then line buffering is performed while accessing a file. If the
buffering value is set to an integer greater than 1, then buffering action is performed
with the indicated buffer size. If the buffering value is negative, then the buffer size is
the system default (default behavior).

The list of different file opening modes –

Modes Description
r Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.
rb Opens a file for reading only in binary format. The file pointer is placed at the beginning

of the file. This is the default mode.
r+ Opens a file for both reading and writing. The file pointer placed at the beginning of

the file.
rb+ Opens a file for both reading and writing in binary format. The file pointer placed at

the beginning of the file.
w Opens a file for writing only. Overwrites the file if the file exists. If the file does not

exist, creates a new file for writing.

Files, Modules, Packages 5.3

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If
the file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists.
If the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file
if the file exists. If the file does not exist, creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists.
That is, the file is in the append mode. If the file does not exist, it creates a new file
for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if
the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened, there would be one file object, to get various information related to
that file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if the file is closed, otherwise false.

file.mode Returns the file access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, otherwise true.

The following illustrate the file attribute description using file object.

f = open(“file1.txt”, “w+”)

print “Name of the file: “, f.name

print “Closed or not : “, f.closed

print “Opening mode : “, f.mode

print “Softspace flag : “, f.softspace

5.4 Problem Solving and Python Programming

Output:
Name of the file: file1.txt
Closed or not: False
Opening mode: w+
Softspace flag: 0

The close() Method
The function close() of a file object flushes if there is any unwritten information and closes

the file object when there is no more writing can be done. Python closes a file automatically when
the reference object of a file is reassigned with another file. It is a good practice to use the close ()
method to close a file. The syntax of close () function is given below.

Syntax

fileObject.close();

The program to perform the open and close operations of a file.

f = open (“file1.txt”, “w+”)

print “Name of the file: “, f.name

close opened file

f.close()

Output:
Name of the file: file1.txt

Reading and Writing Text Files
Python provides read () and write () methods to read and write files through file object

respectively.

The write() Method
The write() method is used to write any string to a file which is opened. Python strings can

have binary data and not just text. The write() method does not add a newline character (‘\n’) to the
end of the string. The syntax for write() function is shown below.

Syntax

fileObject.write(string);

The argument passed is the content to be written into the opened file. The following program
illustrates the file write operation.

f = open(“file1.txt”, “wb”)

print f

f.write(“Python is a programming language.\nIt is very flexible\n”);

Files, Modules, Packages 5.5

Close opened file

f.close()

Output:
open file ‘file1.txt’, mode ‘wb’ at 0xb7eb2410
Python is a programming language.
It is very flexible

The above program creates a file file1.txt and writes the given content in that file and finally
it closes that file. If the file is opened, then it would have content what is written.

If the file already exists, then opening it in write mode erases the old data and starts fresh. If
the file doesn’t exist, then a new one is created.

The write method is used to put data into the file.

for example,

line1 = “Python is a programming language, \n”

f.write (line1)

Here, the file object keeps track of where it is pointing to, so if write function is called again,
it adds the new data to the end of the file. For example,

line2 = “It is very flexible .\n”

f.write (line2)

If no more operations, need to be performed, then the file could be closed using file close()
function.

 f.close()

The read() Method
The file read() function reads the file contents from an open file. It is important to note that

Python strings can have binary data in addition to text data. The syntax for file read() is given below.

Syntax

fileObject.read([count]);

The argument passed is the number of bytes to be read from the opened file. This method
starts reading from the beginning of the file and if the argument count is missing, then it tries to read
as much as possible, till the end of file.

Example

To read from the file file1.txt

Open a file

f=open(“file1.txt”, “w+”)

5.6 Problem Solving and Python Programming

f.write(“ Python is a programming language”)
f.close()
f = open(“file1.txt”, “r+”)
str = f.read(20);
print “ The string read is : “, str
Close opened file
f.close()

Output:
The string read is : Python is a program

5.1.1	 Format operator
The file write() function takes the argument as a string. In order to take other values in a file,

it is important to convert them into strings. The easiest way to do is with str function as follows.

x = 52

f.write (str(x))

Here, the str function converts integer x value as string. An alternative way is to use the
format operator, %. When this is applied to integers, % is considered as the modulus operator. But
when the first operand is a string, % is considered as the format operator.

The first operand is the format string that contains one or more format sequences, to specify
how the second operand is formatted. The result is a string. For example, the format sequence ‘%d’
means that the second operand should be formatted as an integer (d stands for “decimal”): consider
the simple example.

x = 15

print ‘%d’ % x

Output:
15

The result is the string ‘15’, which is not to be confused with the integer value 15. A format
sequence can appear anywhere in the string, so you can embed a value in a sentence:

bugs= 10

print ‘I have spotted %d bugs.’ % bugs

Output:
I have spotted 10 bugs

If there is more than one format sequence in the string, the second argument must be a tuple.
Each format sequence is matched with an element of the tuple, in sequence. The various format
sequences are ‘%d’ to format an integer, ‘%g’ to format a floating-point number and ‘%s’ to format
a string.

Files, Modules, Packages 5.7

print ‘In %d years I have spotted %g %s.’ % (2, 0.3, ‘bugs’)

Output:
In 2 years I have spotted 0.3 bugs.

The number of elements in the tuple has to match the number of format sequences in the
string. The types of the elements have to match the format sequences also.

Example:

print ‘%d %d %d’ % (1, 2)

Output:
Traceback (most recent call last):
 File “main.py”, line 1, in
 print ‘%d %d %d’ % (1, 2)
TypeError: not enough arguments for format string

Example:

print ‘%d’ % ‘dollars’

Output:
Traceback (most recent call last):
 File “main.py”, line 1, in
 print ‘%d’ % ‘dollars’
TypeError: %d format: a number is required, not str

In the first example, there are three format sequences and only two elements; in the second,
the format sequence is for integer but the element is string. The format operator is more effective,
however it is difficult to use.

Python File functions:
There are various functions available with the file object.

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase
and return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

5.8 Problem Solving and Python Programming

read(n) Read atmost n characters form the file. Reads till end of file
if it is negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1) Read and return one line from the file. Reads in at most n
bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most
n bytes/characters if specified.

seek(offset,from=SEEK_SET) Change the file position to offset bytes, in reference to from
(start, current, end).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.

truncate(size=None) Resize the file stream to size bytes. If size is not specified,
resize to current location.

writable() Returns True if the file stream can be written to.

write(s) Write string s to the file and return the number of characters
written.

writelines(lines) Write a list of lines to the file.

File Positions
The tell() method gives the current object position within the file; in other words, the

next read or write will occur at that many bytes from the beginning of the file. The seek (offset
[, from]) method modifies the current file position. The offset argument specifies the number of
bytes to be moved. The from argument specifies the reference position from where the bytes are to
be moved. If from is set to 0, it means use the beginning of the file as the reference position and 1
means use the current position as the reference position and if it is set to 2 then the end of the file
would be taken as the reference position. The following program explains the functions of tell() and
seek() functions.

Open a file

f=open(“file1.txt”, “w+”)

f.write(“ Python is a programming language”)

f.close()

f = open(“file1.txt”, “r+”)

str = f.read(20);

print “ The string read is : “, str

Check current position

pos = f.tell();

print “current file position:”, pos

Files, Modules, Packages 5.9

reposition pointer at the beginning once again
pos = f.seek(0, 0)
str = f . read (10)
print “ Again the string read is: “, str
close opened file
f . close()

Output:
The string read is : Python is a program
Current file position : 20
Again the string read is : Python is

Renaming and Deleting Files
Python os module provides methods that enable us to perform file-processing operations

like renaming and deleting a file. To use this module it is necessary to import the module first and
then the related functions can be called.

The rename() Method
The rename() method takes two arguments, the current filename and the new filename.

Syntax:

os.rename(current_file_name, new_file_name)

Example:

Following is the example to rename an existing file file1.txt:
import os
Rename a file from file1.txt to file2.txt
os.rename(“file1.txt”, “file2.txt”)

The remove() Method
The remove() method can be used to delete files by supplying the name of the file to be

deleted as the argument.

Syntax:

os.remove(file_name)

Example:

Following is the example to delete an existing file file2.txt −
import os
Delete file file2.txt
os.remove(“file2.txt”)
os.mkdir(“test”)

5.10 Problem Solving and Python Programming

Program for Mail Merge:

To send the same invitations to many people, the body of the mail does not change. Only
the name (and maybe address) needs to be changed. Mail merge is a process of doing this. Instead
of writing each mail separately, we have a template for body of the mail and a list of names that we
merge together to form all the mails.

Python program to mail merger

Names are in the file names.txt

Body of the mail is in body.txt

open names.txt for reading

with open(“names.txt”,’r’,encoding = ‘utf-8’) as names_file:

 # open body.txt for reading

 with open(“body.txt”,’r’,encoding = ‘utf-8’) as body_file:

 # read entire content of the body

 body = body_file.read()

 # iterate over names

 for name in names_file:

 mail = “Hello “+name+body

 # write the mails to individual files

 with open(name.strip()+”.txt”,’w’,encoding = ‘utf-8’) as mail_file:

 mail_file.write(mail)

In this program all the names are written in separate lines in the file named “names.txt”. The
body of the letter is stored in the file “body.txt”

The two files are opened in reading mode and iterate over each name using a for loop. A
new file with the name “[name].txt” is created, where name is the name of that person. Here, the
strip() method is used to clean up leading and trailing whitespaces (reading a line from the file
also reads the newline ‘\n’ character). Finally, we write the content of the mail into this file using
the write() method.

5.1.3	 Command Line Arguments
Command line arguments are what we type at the command line prompt along with the

script name while we try to execute our scripts. Python like most other languages provides this
feature. sys.argv is a list in Python, which contains the command line arguments passed to the script.
We can count the number of arguments using len(sys.argv) function. To use sys.argv, we have to
import the sys module.

import sys

print ‘No. of arguments:’, len(sys.argv)

print ‘Argument List:’,str(sys.argv)

Files, Modules, Packages 5.11

Run the above script as follows:

$ python test.py arg1 arg2 arg3

Output:
Number of arguments: 4
Argument List: [‘test.py’, ‘arg1’,’arg2’,’arg3’]

Filenames and paths
Files are organized into directories (also called “folders”). Every program has a “current

directory”, which is the default directory for most operations. For example, when you open a file for
reading, Python looks for it in the current directory. The os module provides functions for working
with files and directories (“os” stands for “operating system”). os.getcwd () returns the name of the
current directory:

import os

cwd = os.getcwd()

print cwd

Output:
/web/com/1493114533_4353

cwd stands for “current working directory.” The result in this example is /web/
com/1493114533_4353.

A string like cwd that identifies a file is called a path. A relative path starts from the current
directory; an absolute path starts from the topmost directory in the file system. The paths we have
seen so far are simple filenames, so they are relative to the current directory. To find the absolute
path to a file, you can use os.path.abspath:

abs_path=os.path.abspath(‘file1.txt’)

print abs_path

Output:
/web/com/1493114533_4353/file1.txt

os.path.exists checks whether a file or directory exists:

print os.path.exists(‘file1.txt’)

Output:
True

If it exists, os.path.isdir checks whether it’s a directory:

print os.path.isdir(‘file1.txt’)

Output:
False

5.12 Problem Solving and Python Programming

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:

>>> os.listdir(cwd)

[‘file1’, ‘file2’]

To demonstrate these functions, the following example “walks” through a directory, prints
the names of all the files, and calls itself recursively on all the directories.

def walk(dirname):

for name in os.listdir(dirname):

path = os.path.join(dirname, name)

if os.path.isfile(path):

print path

else:

walk(path)

os.path.join takes a directory and a file name and joins them into a complete path.

5.2.	 ERRORS AND EXCEPTION
5.2.1	 Errors

Errors or mistakes in a program are often referred to as bugs. They are almost always the
fault of the programmer. Debugging is the process of finding and eliminating errors. Errors can be
classified into three major groups:

•• Syntax errors

•• Runtime errors

•• Logical errors

Syntax Errors
Syntax errors, also known as parsing errors are identified by Python while parsing the

program. It displays error message and exit without continuing execution process. They are similar
to spelling mistakes or grammar mistakes in normal language like English. Some common Python
syntax errors include:

•• leaving out a keyword

•• putting a keyword in the wrong place

•• leaving out a symbol, such as a colon, comma or brackets

•• misspelling a keyword

•• incorrect indentation

•• empty block

Files, Modules, Packages 5.13

Here are some examples of syntax errors in Python:

a=10

b=20

if a<b

print ‘a is greater’

Error Message:

 File “main.py”, line 3

 if a<b

 ^

SyntaxError: invalid syntax
The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest

point in the line where the error was detected. The error is caused by (or at least detected at) the
token preceding the arrow: in the example, the error is detected at the if a<b since a colon (‘:’) is
missing before it. File name and line number are printed so you know where to look in case the input
came from a script.

if True:

	 prnt ‘Hello’

Error Message:

 File “main.py”, line 2

 prnt ‘Hello’

 ^

SyntaxError: invalid syntax

In the above example, the error is detected at prnt ‘Hello’ since print is misspelled.

Logical errors
Logical errors occur due to mistake in program’s logic. Here program runs without any error

messages, but produces an incorrect result. These errors are difficult to fix. Here are some examples
of mistakes which lead to logical errors:

•• using the wrong variable name

•• indenting a block to the wrong level

•• using integer division instead of floating-point division

•• getting operator precedence wrong

•• making a mistake in a boolean expression

•• off-by-one, and other numerical errors

5.14 Problem Solving and Python Programming

Here is an example of logical error in Python:

i=1

fact=0

while i<=5:

	 fact=fact*i

	 i=i+1

print ‘Fact:’, fact

Sample Output:
Fact:0

In this example for computing factorial of 5, the obtained output is 0. There are no syntax
errors. The wrong output occurs due to logical error fact=0. To compute factorial, the fact value
must be initialized to 1. As it is assigned as 0, it results in wrong output.

5.2.2	 Exceptions
An exception is an error that occurs during execution of a program. It is also called as run

time errors. Some examples of Python runtime errors:

•• division by zero

•• performing an operation on incompatible types

•• using an identifier which has not been defined

•• accessing a list element, dictionary value or object attribute which doesn’t exist

•• trying to access a file which doesn’t exist

An example for run time error is as follows.

print (10/0)

Error Message:

Traceback (most recent call last):

File “main.py”, line 1, in <module>

print (10/0)

ZeroDivisionError: integer division or modulo by zero

Exceptions come in different types, and the type is printed as part of the message: the type
in the example is ZeroDivisionError which occurs due to division by 0. The string printed as the
exception type is the name of the built-in exception that occurred.

Exception refers to unexpected condition in a program. The unusual conditions could be
faults, causing an error which in turn causes the program to fail. The error handling mechanism is
referred to as exception handling. Many programming languages like C++, PHP, Java, Python, and
many others have built-in support for exception handling.

Files, Modules, Packages 5.15

Python has many built-in exceptions which forces your program to output an error when
something in it goes wrong. When these exceptions occur, it stops the current process and passes the
control to corresponding exception handler. If not handled, our program will crash.

Some of the standard exceptions available in Python are listed below.

Exception Name Description
Exception Base class for all exceptions
ArithmeticError Base class for all errors that occur for numeric calculation.
OverflowError Raised when a calculation exceeds maximum limit for a numeric

type.
FloatingPointError Raised when a floating point calculation fails.
ZeroDivisionError Raised when division or modulo by zero takes place for all

numeric types.
AssertionError Raised in case of failure of the Assert statement
EOFError Raised when there is no input from either the raw_input() or

input() function and the end of file is reached.
ImportError Raised when an import statement fails.
IndexError Raised when an index is not found in a sequence
KeyError Raised when the specified key is not found in the dictionary.
NameError Raised when an identifier is not found in the local or global

namespace
IOError Raised when an input/ output operation fails, such as the print

statement or the open() function when trying to open a file that
does not exist.

SyntaxError Raised when there is an error in Python syntax
SystemExit Raised when Python interpreter is quit by using the sys.exit()

function. If not handled in the code, causes the interpreter to exit
TypeError Raised when an operation or function is attempted that is invalid

for the specified data type
ValueError Raised when the built-in function for a data type has the valid type

of arguments, but the arguments have invalid values specified.
RuntimeError Raised when a generated error does not fall into any category

Handling Exceptions

The simplest way to handle exceptions is with a “try-except” block. Exceptions that are
caught in try blocks are handled in except blocks. The exception handling process in Python is
shown in Figure.5.1. If an error is encountered, a try block code execution is stopped and control
transferred down to except block.

5.16 Problem Solving and Python Programming

Exception may
occur

Raise the
Exception

Catch if
exception occurs

Try Raise Except

Figure 5.1. Exception Handling

Syntax:

try:

	 # statements

	 break

except ErrorName:

	 # handler code

The try statement works as follows.

•• First, the try clause (the statement(s) between the try and except keywords) is executed.

•• If no exception occurs, the except clause is skipped and execution of the try statement
is finished.

•• If an exception occurs during execution of the try clause, the rest of the clause is skipped.
Then if its type matches the exception named after the except keyword, the except
clause is executed, and then execution continues after the try statement.

•• If an exception occurs which does not match the exception named in the except clause, it
is passed on to outer try statements; if no handler is found, it is an unhandled exception
and execution stops with a message.

A simple example to handle divide by zero error is as follows.

(x,y) = (5,0)

try:

 z = x/y

except ZeroDivisionError:

 print “divide by zero”

Sample Output:
divide by zero

To display built-in error message of exception, you could have :

(x,y) = (5,0)

try:

 z = x/y

Files, Modules, Packages 5.17

except ZeroDivisionError as e:

 z = e # representation: “<exceptions.ZeroDivisionError instance at 0x817426c>”

print z # output: “integer division or modulo by zero”

Sample Output:

integer division or modulo by zero

A try statement may have more than one except clause, to specify handlers for different
exceptions. If an exception occurs, Python will check each except clause from the top down to see
if the exception type matches. If none of the except clauses match, the exception will be considered
unhandled, and your program will crash:

Syntax:
try:
	 # statements
	 break
except ErrorName1:
	 # handler code
except ErrorName2:
	 # handler code

A simple example to handle multiple exceptions is as follows.
try:
 dividend = int(input(“Please enter the dividend: “))
 divisor = int(input(“Please enter the divisor: “))
 print(“%d / %d = %f” % (dividend, divisor, dividend/divisor))
except ValueError:
 print(“The divisor and dividend have to be numbers!”)
except ZeroDivisionError:
 print(“The dividend may not be zero!”)

Sample input/output (successful):
Please enter the dividend: 10
Please enter the divisor: 2
10 / 2 = 5.000000

Sample input/output (unsuccessful-divide by zero error):
Please enter the dividend: 10
Please enter the divisor: 0
The dividend may not be zero!

5.18 Problem Solving and Python Programming

Sample input/output (unsuccessful-value error):
Please enter the dividend: ‘s’
The divisor and dividend have to be numbers!

An except clause may name multiple exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):

... #handler code

Example:
try:
 dividend = int(input(“Please enter the dividend: “))
 divisor = int(input(“Please enter the divisor: “))
 print(“%d / %d = %f” % (dividend, divisor, dividend/divisor))
except(ValueError, ZeroDivisionError):
 print(“Oops, something went wrong!”)

Sample Input/Output:
Please enter the dividend: 10
Please enter the divisor: 0
Oops, something went wrong!

To catch all types of exceptions using single except clause, simply mention except keyword
without specifying error name. It is shown in following example.

try:

 dividend = int(input(“Please enter the dividend: “))

 divisor = int(input(“Please enter the divisor: “))

 print(“%d / %d = %f” % (dividend, divisor, dividend/divisor))

except:

 print(“Oops, something went wrong!”)

Raising Exceptions
The raise statement initiates a new exception. It allows the programmer to force a specified

exception to occur. The raise statement does two things: it creates an exception object, and
immediately leaves the expected program execution sequence to search the enclosing try statements
for a matching except clause. It is commonly used for raising user defined exceptions. Two forms
of the raise statement are:

Syntax:

raise ExceptionClass(value)

raise Exception

Files, Modules, Packages 5.19

Example:

try:

	 raise NameError

except NameError:

	 print(‘Error’)

Sample Output:

Error

raise without any arguments is a special use of python syntax. It means get the exception
and re-raise it. The process is called as reraise. If no expressions are present, raise re-raises the last
exception that was active in the current scope.

Example:
try:
	 raise NameError
except NameError:
	 print(‘Error’)
	 raise

Sample Output:
Error
Traceback (most recent call last):
File “main.py”, line 2, in <module>
raise NameError(‘Hi’)
NameError: Hi

In the example, raise statement inside except clause allows you to re-raise the exception
NameError.

The else and finally statements
Two clauses that can be added optionally to try-except block are else and finally. else will be

executed only if the try clause doesn’t raise an exception:

try:

 age = int(input(“Please enter your age: “))

except ValueError:

 print(“Hey, that wasn’t a number!”)

else:

 print(“I see that you are %d years old.” % age)

5.20 Problem Solving and Python Programming

Sample input/output:
Please enter your age: 10
I see that you are 10 years old.
Please enter your age: ‘a’
Hey, that wasn’t a number!

In addition to using except block after the try block, you can also use the finally block. The
code in the finally block will be executed regardless of whether an exception occurs and even if we
exit the block using break, continue, or return.

try:

 age = int(input(“Please enter your age: “))

except ValueError:

 print(“Hey, that wasn’t a number!”)

else:

 print(“I see that you are %d years old.” % age)

finally:

 print(“Goodbye!”)

Sample input/output:
Please enter your age: 20
I see that you are 20 years old.
Goodbye!

5.2.2.4. User-defined Exceptions
Python allows the user to create their custom exceptions by creating a new class. This

exception class has to be derived, either directly or indirectly, from Exception class.

define Python user-defined exceptions

class Error(Exception):

 “””Base class for other exceptions”””

 pass # null operation
class PosError(Error):
 “””Raised when the input value is positive”””
 pass
class NegError(Error):
 “””Raised when the input value is negative”””
 pass

Files, Modules, Packages 5.21

our main program

number = 0

while True:

 try:

 i_num = int(input(“Enter a number: “))

 if i_num < number:

 raise NegError

 elif i_num > number:

 raise PosError

 break

 except PosError:

 print(“This value is positive!”)

 print()

 except NegError:

 print(“This value is negative!”)

 print()

Sample input/output:
Enter a number: 12
This value is positive!

In the example, the user defined exception class Error is derived from built-in class
Exception. It handles two user defined exceptions: PosError, raised when input value is positive
and NegError, raised when input value is negative. The pass keyword indicates null block. The
main program reads user input and compares input value with 0. If input>0, the exception PosError
is raised using raise keyword else the exception NegError is raised.

5.3	 MODULES
A Python module is a file that consists of Python code. It allows us to logically arrange

related code and makes the code easier to understand and use. It defines functions, classes and
variables.

Python has many useful functions and resources in modules. Functions such as abs() and
round() from __builtin__ module are always directly accessible in every Python code. But, the
programmer must explicitly import other functions from the modules in which they are defined.

import statement

An import statement is used to import Python module in some Python source file.

5.22 Problem Solving and Python Programming

The syntax is:

import module1[, module2[,... modulen]

When an ‘import’ statement is encountered by the interpreter, the corresponding module(s)
is imported if it is available in the search path.

Example:

import math

To use a resource from a module, the following syntax is used:

modulename.resourcename

For example, math is a built-in module that offers several built-in functions for carrying out
basic mathematical operations. The following code imports math module and lists a directory of its
resources:

import math

print dir(math)

Output:
[‘__doc__’, ‘__file__’, ‘__name__’, ‘__package__’, ‘acos’, ‘acosh’, ‘asin’,
‘asinh’, ‘atan’, ‘atan2’, ‘atanh’, ‘ceil’, ‘copysign’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’,
‘erf’, ‘erfc’, ‘exp’, ‘expm1’, ‘fabs’, ‘factorial’, ‘floor’, ‘fmod’, ‘frexp’, ‘fsum’,
‘gamma’, ‘hypot’, ‘isinf’, ‘isnan’, ‘ldexp’, ‘lgamma’, ‘log’, ‘log10’, ‘log1p’,
‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’, ‘trunc’]

The usage of some built-in functions of math module is shown in the following code along with
its output:

import math # Import built-in module math
print math.floor(6.9)
print math.ceil(6.9)
print math.pow(3,4)

Output:
6.0
7.0
81.0

The following table gives description about a few modules of Python:

Table 5.1: Python modules and their description

Module Description
cmath Mathematical operations using complex numbers
copy Shallow copy and deep copy operations

Files, Modules, Packages 5.23

datetime Date and time
fileinput Loop over standard input or list of files
keyword Testing whether a given string is a keyword
linecache Accessing individual lines of text files randomly
math Basic mathematical operations
modulefinder Finding modules
numbers Abstract base classes for numerals
operator Functions analogous to basic operators
py_compile Compiling Python source code to generate byte code
statistics Statistical operations
string String operations

5.3.1	 Writing modules
Any Python source file can be imported as a module into another Python source file. For

example, consider the following code named as support.py, which is a Python source file defining
two functions add() and display().

support.py

def add(a, b):

 print ‘Result is ‘, a+b

 return

def display(p):

 print ‘Welcome, ‘,p

 return

This support.py file can be imported as a module in another Python source file and its
functions can be called from the new file as shown in the following code:

import support # Import module support

support.add(3,4) # calling add() of support module with two integer values

support.add(3.5,4.7) # calling add() of support module with two real values

support.add(‘a’,’b’) # calling add() of support module with two character values

support.add(‘Ram’,’Kumar’) # calling add() of support module with two string values

support.display(‘Ram’) # calling display() of support module with a string value

When this code is executed, the following output is produced:

Result is 7

Result is 8.2

5.24 Problem Solving and Python Programming

Result is ab

Result is RamKumar

Welcome, Ram

from...import Statement
It allows us to import specific attributes from a module into the current namespace.

Syntax:

from modulename import name1[, name2[, ... nameN]]

The first statement of the following code does not import the entire module support into the
current namespace; it just introduces the item add from the module support into the global symbol
table of the importing module. Hence, a call to display() function generates an error as shown in the
output.

from support import add # Import module support
add(3,4) # calling add() of support module with two integer values
add(3.5,4.7) # calling add() of support module with two real values
add(‘a’,’b’) # calling add() of support module with two character values
add(‘Ram’,’Kumar’) # calling add() of support module with two string values
display(‘Ram’) # calling display() of support module with a string value

Output:
Result is 7
Result is 8.2
Result is ab
Result is RamKumar
Traceback (most recent call last):
 File “main.py”, line 8, in
 display(‘Ram’) # calling display() of support module with a string value
NameError: name ‘display’ is not defined

from...import * Statement:
It allows us to import all names from a module into the current namespace.

Syntax:

from modulename import *

Sample Code:

from support import * # Import module support

add(3,4) # calling add() of support module with two integer values

Files, Modules, Packages 5.25

add(3.5,4.7) # calling add() of support module with two real values

add(‘a’,’b’) # calling add() of support module with two character values

add(‘Ram’,’Kumar’) # calling add() of support module with two string values

display(‘Ram’) # calling display() of support module with a string value

Sample Output:
Result is 7
Result is 8.2
Result is ab
Result is RamKumar
Welcome, Ram

Programs that will be imported as modules often use the following expression:

if __name__ == ‘__main__’:

test code

Here, __name__ is a built-in variable and is set when the program starts execution. If the
program runs as a script, __name__ has the value __main__ and the test code is executed. Else, the
test code is skipped.

Sample Code:

from support import * # Import module support

if __name__ == ‘__main__’: # add() and display() are called only if this pgm runs as
a script.

 add(3,4)

 display(‘Ram’)

Sample Output:
Result is 7
Welcome, Ram
reload()

When the module is already imported into a script, the module is not re-read eventhough it
is modified. The code of a module is executed only once. To reload the previously imported module
again, the reload() function can be used.

Syntax:

reload(modulename)

Suppose we have the following code in a module named my_module.

print(“Welcome”)

5.26 Problem Solving and Python Programming

Now, examine the following execution sequence:

>>> import my_module

Welcome

>>> import my_module

>>> import my_module

Here, the code is executed only once since the module was imported only once. If the
module is subsequently changed, it has to be reloaded. For this reloading, one of the approaches is
to restart the interpreter. But this does not help much. So, we can employ reload() inside the imp
module as shown:

>>> import imp
>>> import my_module
Welcome
>>> import my_module
>>> imp.reload(my_module)
Welcome
<module ‘my_module’ from ‘.\\my_module.py’>

5.3.2	 Locating Modules
When a module is imported, Python interpreter searches for the module in the following

sequence:
(1)	 The current directory.
(2)	 If the module is not found in the current directory, each directory in the shell variable

PYTHONPATH is searched.
(3)	 At last, Python checks the installation-dependant default directory.
The module search path is stored in sys module as sys.path variable. This variable contains

the current directory, PYTHONPATH, and the installation-dependent default.

5.4	 PACKAGES
When we have a large number of Python modules, they can be organized into

packages such that similar modules are placed in one package and different modules are
placed in different packages. A package is a hierarchical file directory structure that defines a
single Python application environment that consists of modules, sub-packages, sub-subpackages,
and so on. In another words, it is a collection of modules. When a package is imported, Python
explores in list of directories on sys.path for the package subdirectory.

5.4.1	 Steps to Create a Python Package

(1)	 Create a directory and name it with a package name.

(2)	Keep subdirectories (subpackages) and modules in it.

Files, Modules, Packages 5.27

(3)	Create __init__.py file in the directory

This __init__.py file can be left empty but we generally place the initialization code with
import statements to import resources from a newly created package. This file is necessary since
Python will know that this directory is a Python package directory other than an ordinary directory.

Example:

Assume we are creating a package named Animals with some subpackages as shown in
Figure.5.2.

Animals
(Package)

init.py
(Module)

Mammals
(Sub-Package)

Birds
(Sub-Package)

init.py
(Module)

create.py
(Module)

print.py
(Module)

display.py
(Module)

init.py
(Module)

create.py
(Module)

 Figure 5.2. Organization of packages and modules

Modules are imported from packages using dot (.) operator.

Method 1:
Consider, we import the display.py module in the above example. It is accomplished by the

following statement.

import Animals.Birds.display

Now if this display.py module contains a function named displayByName(), we must use
the following statement with full name to reference it.

Animals.Birds.display.displayByName()

Method 2:
On another way, we can import display.py module alone as follows:

from Animals.Birds import display

Then, we can call displayByName() function simply as shown in the following statement:

display.displayByName()

5.28 Problem Solving and Python Programming

Method 3:
In the following statement, the required function alone is imported from a module within a

package:

from Animals.Birds.display import displayByName

Now, this function is called directly:

displayByName()

Though this method is simple, usage of full namespace qualifier avoids confusion and
prevents two similar identifier names from colliding.

In the above example, __init__.py of Animals package contains the following code:

from Mammals import Mammals
from Birds import Birds

In python, module is a single Python file and package is a directory of Python modules
containing an additional __init__.py file. Packages can be nested to any depth, but the
corresponding directories should include their own __init__.py file.

5.5	 ILLUSTRATIVE PROGRAMS
5.5.1	 Python program to handle exception when file open fails

try:

 fob = open(“test”, “r”)	 # open file in read mode

 fob.write(“It’s my test file to verify exception handling in Python!!”)

except IOError:

 print “Error: can\’t find the file or read data” # Exception occurs

else:

 print “Write operation is performed successfully on the file” # no Exception

Error:

Error: can’t find the file or read data

5.5.2	 Python program to raise an exception when the user input is negative
try:
 a = int(input(“Enter a positive integer value: “))
 if a <= 0:
 raise ValueError(“This is not a positive number!!”)
except ValueError as ve:
 print(ve)

Files, Modules, Packages 5.29

Sample input:

Enter a positive integer value: -1
Error:
This is not a positive number!!

5.5.3	 Python program to count number of words in a file
 try:

	 filename = ‘GettysburgAddress.txt’ # specify your input file name

	 textfile = open(filename, ‘r’)

	 print(“The number of words are: “ + len(textfile.split(“ “)))

	 textfile.close()

except IOError:

	 print ‘Cannot open file %s for reading’ % filename

	 import sys

	 sys.exit(0)

Sample Output:
The number of words are: 20

5.5.4	 Python program to count the frequency of words in a text file
file=open(“test.txt”,”r+”)
wordcount={} # define a dictionary that holds words its count
for word in file.read().split(): # for loop iterates through each word is the file
 if word not in wordcount:
 wordcount[word] = 1
 else:
 wordcount[word] += 1
for k,v in wordcount.items():
 print k, v
file.close()

Sample Output:
This 1
program 2
example 1
Python 2

Exception is raised
 if no is negative

5.30 Problem Solving and Python Programming

5.5.5	 Python program to copy a content of one file to another
Program 1:

rfile=open(‘/testfile.txt’, ‘r’) try: # open file is read mode
 reading_file=rfile.read()
 wfile=open(‘/testfile2.txt’, ‘w’) # open file is write mode
 try:
 wfile.write(reading_file) # write into file
 finally:
 wfile.close()
finally:
 rfile.close()

Program 2:
with open(“in.txt”) as f:
 with open(“out.txt”, “w”) as f1:
 for line in f:
 if “ROW” in line:
 f1.write(line)

Program 3:
The shutil module offers a number of high-level operations on files and collections
of files
from shutil import copyfile
copyfile(‘test.py’, ‘abc.py’) # copy content of test.py to abc.py

5.5.6	 Some Additional Programs
Python program to append text to a file and display the text

def file_read(fname):
 with open(fname, “w”) as myfile:
 myfile.write(“Python Exercises\n”)
 myfile.write(“Java Exercises”)
 txt = open(fname)
 print(txt.read())
file_read(‘abc.txt’)

Sample Output:
Python Exercises
Java Exercises

Files, Modules, Packages 5.31

Python program to count the number of lines in a text file
def file_lengthy(fname):

 with open(fname) as f:

 for i, l in enumerate(f):

 pass

 return i + 1

print(“Number of lines in the file: “,file_lengthy(“test.txt”))

In this example, f is the file object. enumerate(f) iterate over lines of the file. So each time
through the loop i gets assigned a line number, and l gets assigned the corresponding line from the
file.

Random access file - Python program to read a random line from a file.
A random-access data file enables you to read or write information anywhere in the file.

You can use seek() method to set the file marker position and tell() method to get the current
position of the file marker. In a sequential-access file, you can only read and write information
sequentially, starting from the beginning of the file.

f=open(‘Python_source\\test.txt’,’w’)
f.write(‘DearChanna ‘)
f.seek(4) #move file pointer to 4th position from beginning of file
f.write(‘ Mr.Channa’)
f.close()
f=open(‘Python_source\\test.txt’,’r’)
f.read()

Sample Output:
Dear Mr.Channa

Program that asks the user to input customer information, call writetofile method to
write data to the file and call getall method to retrieve customer information from file.

#write data to file

def writetofile(Name,Email=’’,Tel=’’,Address=’’):

 try:

 f=open(r’customerlist.txt’,’a’)

 f.write(Name+’:’+Email+’:’+Tel+’:’+Address+’\n’)

 except Exception:’Print error in writing to file...’

 finally:

5.32 Problem Solving and Python Programming

 f.flush()

 f.close()

#Get all customers’information and display

def getall():

 f=open(r’customerlist.txt’,’r’)#open file for reading

 content=f.readlines()#read all lines

 f.close()

 return content

def add():

 Name=raw_input(‘Name:’)

 Email=raw_input(‘Email:’)

 Tel=raw_input(‘Tel:’)

 Address=raw_input(‘Address:’)

 writetofile(Name,Email,Tel,Address)

#main program

add()

 print getall()

With reference to previous program, write a method to search for a customer by name.
#Search customer by name. If match is found, it returns the position of the name
else returns -1.

def search(Name):

 global flag#declare global variable

 try:

 f=open(r’customerlist.txt’,’r’)#open file for reading

 f.seek(0)

 content=f.readline()

 while content!=’’:

 if content.find(Name)!=-1:

 print content

 flag=1

return int(f.tell())-int(len(content)+1)

 else:

return the position of the
matched name

Files, Modules, Packages 5.33

 content=f.readline()

 flag=0

 except Exception:print ‘Error in reading file...’

 finally:

 f.close()

 if flag==0:

 print ‘Not found’ #Inform the use if the record does not exist

 return -1 # The record not found-->return -1

Using previous search method, write a program to delete a customer name from file.
#delete customer’s information by name

def delete(Name):

 print search(Name)

 p=search(Name) # returns position of given customer name

 print “x=”,p

 if p!=-1: #Make sure the record exists

 st=getall() #retrieve content about cutomer

 f=open(r’customerlist.txt’,’w’)#open file for writing

 f.writelines(st)

 f.seek(p)

 f.write(‘*****’)#write 5 starts to override the 5 characters of the name to
be deleted

 else:

 print ‘No record to delete’#Inform the use if the record does not exist

 f.close()

5.34 Problem Solving and Python Programming

TWO MARKS QUESTION & ANSWER

1.	 What is the use of modules in Python?

A Python module is a file that consists of Python code. It allows us to logically arrange
related code and makes the code easier to understand and use. It defines functions, classes and
variables. Python has many useful functions and resources in modules. Functions such as abs()
and round() from_builtin module are always directly accessible in every Python code. But, the
programmer must explicitly import other functions from the modules in which they are defined.

2.	 Name the File-related modules in Python.

Python provides libraries / modules with functions that enable us to manipulate
text files and binary files on file system. Using them we can create files, update
their contents, copy, and delete files. The libraries are : os, os.path, and shutil.
Here, os and os.path – modules include functions for accessing the filesystem
shutil – module enables to copy and delete the files.

3.	 Name few Python modules for Statistical, Numerical and Scientific computations.

Module Usage
numPy provides an array/matrix type, and it is useful for doing computations on

arrays
scipy provides methods for doing numeric integrals and solving differential equa-

tions
pylab generating and saving plots
matplotlib managing data and generating plots

4.	 Define Package.

A package is a hierarchical file directory structure that defines a single Python application
environment that consists of modules, sub-packages, sub-subpackages, and so on. In another
words, it is a collection of modules. When a package is imported, Python explores in list of
directories on sys.path for the package subdirectory.

5.	 Define Exception.

An exception is an error that occurs during execution of a program. It is also called as run time
errors. Some examples of Python runtime errors:

•• division by zero

•• performing an operation on incompatible types

6.	 How exceptions are handled in Python?

Python handle exceptions using “try-except” block. Exceptions that are caught in try blocks are
handled in except blocks. If an error is encountered, a try block code execution is stopped and
control transferred down to except block.

Files, Modules, Packages 5.35

Syntax:

try:

	 # statements

	 break

except ErrorName:

	 # handler code

7.	 When the finally block is executed?

The code in the finally block will be executed regardless of whether an exception occurs and
even if we exit the block using break, continue, or return.

Example:

try:

 age = int(input(“Please enter your age: “))

except ValueError:

 print(“Hey, that wasn’t a number!”)

finally:

 print(“Goodbye!”)

8.	 List the steps involved in creating packages.

(1)	 Create a directory and name it with a package name.

(2)	 Keep subdirectories (subpackages) and modules in it.

(3)	 Create init.py file in the directory.

9.	 What are command line arguments?

Command line arguments are the arguments passed into the program from the command line.
sys.argv is a list in Python, which contains the command line arguments passed to the script.
We can count the number of arguments using len(sys.argv) function. To use sys.argv, we have
to import the sys module.

Example:

import sys

print ‘No. of arguments:’, len(sys.argv)

print ‘Argument List:’,str(sys.argv)

10.	 Differentiate error and exception.

Errors or mistakes in a program are often referred to as bugs. They can be classified into three
major groups: Syntax errors, Runtime errors, Logical errors. Whereas exception is an error that
occurs during execution of a program. It is also called as run time errors.

5.36 Problem Solving and Python Programming

11.	 How to catch all types of exception using single clause?

To catch all types of exceptions using single except clause, simply mention except keyword
without specifying error name.

Example:

try:

 dividend = int(input(“Please enter the dividend: “))

 divisor = int(input(“Please enter the divisor: “))

 print(“%d / %d = %f” % (dividend, divisor, dividend/divisor))

except:

 print(“Oops, something went wrong!”)

12.	 What is the use of raise statement?

The raise statement initiates a new exception specified by the programmer.

Example:

try:

	 raise NameError

except NameError:

	 print(‘Error’)

13. What is the use of modules in Python?

A Python module is a file that consists of Python code. It allows us to logically arrange
related code and makes the code easier to understand and use. It defines functions, classes
and variables. Python has many useful functions and resources in modules. Functions such
as abs() and round() from __builtin__ module are always directly accessible in every Python
code. But, the programmer must explicitly import other functions from the modules in which
they are defined.

14. Name the File-related modules in Python.

Python provides libraries / modules with functions that enable us to manipulate
text files and binary files on file system. Using them we can create files, update
their contents, copy, and delete files. The libraries are : os, os.path, and shutil.
Here, os and os.path – modules include functions for accessing the filesystem
shutil – module enables to copy and delete the files.

15. Name few Python modules for Statistical, Numerical and Scientific computations.

Module Usage

numPy provides an array/matrix type, and it is useful for doing
computations on arrays

Files, Modules, Packages 5.37

scipy provides methods for doing numeric integrals and
solving differential equations

pylab generating and saving plots

matplotlib managing data and generating plots

16. Define Package.

A package is a hierarchical file directory structure that defines a single Python application
environment that consists of modules, sub-packages, sub-subpackages, and so on. In another
words, it is a collection of modules. When a package is imported, Python explores in list of
directories on sys.path for the package subdirectory.

17. Define Exception.

An exception is an error that occurs during execution of a program. It is also called as run time
errors. Some examples of Python runtime errors:

•• division by zero

•• performing an operation on incompatible types

18. How exceptions are handled in Python?

Python handle exceptions using "try-except" block. Exceptions that are caught in try blocks are
handled in except blocks. If an error is encountered, a try block code execution is stopped and
control transferred down to except block.

Syntax:

try:

	 # statements

	 break

except ErrorName:

	 # handler code

19. When the finally block is executed?

The code in the finally block will be executed regardless of whether an exception occurs and
even if we exit the block using break, continue, or return.

Example:

try:

 age = int(input("Please enter your age: "))

except ValueError:

 print("Hey, that wasn't a number!")

finally:

 print("Goodbye!")

5.38 Problem Solving and Python Programming

20. List the steps involved in creating packages.

(1)	 Create a directory and name it with a package name.

(2)	 Keep subdirectories (subpackages) and modules in it.

(3)	 Create __init__.py file in the directory.

21. What are command line arguments?

Command line arguments are the arguments passed into the program from the command line.
sys.argv is a list in Python, which contains the command line arguments passed to the script.
We can count the number of arguments using len(sys.argv) function. To use sys.argv, we have
to import the sys module.

Example:

import sys

print ‘No. of arguments:’, len(sys.argv)

print ‘Argument List:’,str(sys.argv)

21. Differentiate error and exception.

Errors or mistakes in a program are often referred to as bugs. They can be classified into three
major groups: Syntax errors, Runtime errors, Logical errors. Whereas exception is an error that
occurs during execution of a program. It is also called as run time errors.

22. How to catch all types of exception using single clause?

To catch all types of exceptions using single except clause, simply mention except keyword
without specifying error name.

Example:
try:
 dividend = int(input("Please enter the dividend: "))
 divisor = int(input("Please enter the divisor: "))
 print("%d / %d = %f" % (dividend, divisor, dividend/divisor))
except:
 print("Oops, something went wrong!")

23. What is the use of raise statement?

The raise statement initiates a new exception specified by the programmer.

Example:

try:

	 raise NameError

except NameError:

	 print(‘Error’)

Files, Modules, Packages 5.39

24. Give all the file processing modes supported by Python.

Python allows you to open files in one of the three modes. They are:
read-only mode, write-only mode, read-write mode, and append mode by specifying the flags
“r”, “w”, “rw”, “a” respectively. A text file can be opened in any one of the above said modes
by specifying the option “t” along with “r”, “w”, “rw”, and “a”, so that the preceding modes
become “rt”, “wt”, “rwt”, and “at”.A binary file can be opened in any one of the above said
modes by specifying the option “b” along with “r”, “w”, “rw”, and “a” so that the preceding
modes become “rb”, “wb”, “rwb”, “ab”.

25. Explain the use of “with” statement.

In python generally “with” statement is used to open a file, process the data present in the
file, and also to close the file without calling a close() method. “with” statement makes the
exception handling simpler by providing cleanup activities.

General form of with:

with open(“file name”, “mode”) as file-var:

processing statements

note: no need to close the file by calling close() upon file-var.close()

26. Explain how to redirect the output of a python script from standout (monitor) on to a file?

They are two possible ways of redirecting the output from standout to a file.

1.	 Open an output file in “write” mode and the print the contents in to that file, using sys.
stdout attribute.import sys

 filename = “outputfile” sys.stdout = open() print “testing”

2.	 You can create a python script say .py file with the contents, say print “testing”
and then redirect it to the output file while executing it at the command prompt.
Eg: redirect_output.py has the following code:

 print “Testing” execution: python redirect_output.py > outputfile.

27. Explain the shortest way to open a text file and its contents?

The shortest way to open a text file is by using “with” command as follows:

with open("file-name", "r") as fp:

fileData = fp.read()

#to print the contents of the file print(fileData)

28. What is the use of enumerate () in python?

Using enumerate() function you can iterate through the sequence and retrieve the index position
and its corresponding value at the same time.

>>> for i,v in enumerate([‘Python’,’Java’,’C++’]):print(i,v)

0 Python

5.40 Problem Solving and Python Programming

1 Java

2 C++

29. How do you perform pattern matching in Python? Explain.

Regular Expressions/REs/ regexes enable us to specify expressions that can match specific
“parts” of a given string. For instance, we can define a regular expression to match a single
character or a digit, a telephone number, or an email address, etc.The Python’s “re” module
provides regular expression patterns and was introduce from later versions of Python 2.5.
“re” module is providing methods for search text strings, or replacing text strings along with
methods for splitting text strings based on the pattern defined.

30. Name few methods for matching and searching the occurrences of a pattern in a given text
string?

There are 4 different methods in “re” module to perform pattern matching. They are:
match() – matches the pattern only to the beginning of the String. search() – scan the string and
look for a location the pattern matches findall() – finds all the occurrences of match and return
them as a list

finditer() – finds all the occurrences of match and return them as an iterator.

31. Explain split(), sub() and subn() methods of Python.

To modify the strings, Python’s “re” module is providing 3 methods. They are: split() – uses
a regex pattern to “split” a given string into a list. sub() – finds all substrings where the regex
pattern matches and then replace them with a different string subn() – it is similar to sub() and
also returns the new string along with the no. of replacements.

32. How to display the contents of text file in reverse order?

1. convert the given file into a list.

2. reverse the list by using reversed()

Eg: for line in reversed(list(open(“file-name”,”r”))):print(line)

33. What is JSON? How would convert JSON data into Python data?

JSON – stands for JavaScript Object Notation. It is a popular data format for storing data in
NoSQL databases. Generally JSON is built on 2 structures.

1. A collection of <name, value> pairs.

2. An ordered list of values.

As Python supports JSON parsers, JSON-based data is actually represented as a dictionary in
Python. You can convert json data into python using load() of json module.

34. What is TkInter?

TkInter is Python library. It is a toolkit for GUI development. It provides support for various
GUI tools or widgets (such as buttons, labels, text boxes, radio buttons, etc) that are used in

Files, Modules, Packages 5.41

GUI applications. The common attributes of them include Dimensions, Colors, Fonts, Cursors,
etc.

35. Name and explain the three magic methods of Python that are used in the construction and
initialization of custom objects.

The 3 magic methods of Python that are used in the construction and initialization of custom
Objects are: init__, new, and del__.

new – this method can be considered as a “constructor”. It is invoked to create an instance of a
class with the statement say, myObj = MyClass () init__ — It is an “initializer”/ “constructor”
method. It is invoked whenever any arguments are passed at the time of creating an object.
myObj = MyClass(‘Pizza’,25) del- this method is a “destructor” of the class. Whenever an
object is deleted, invocation of del__ takes place and it defines behaviour during the garbage
collection.

Note: new, del are rarely used explicitly.

36. What is Exception Handling? How do you achieve it in Python?

Exception Handling prevents the codes and scripts from breaking on receipt of an error at run
-time might be at the time doing I/O, due to syntax errors, data types doesn’t match. Generally
it can be used for handling user inputs.

The keywords that are used to handle exceptions in Python are: try – it will try to execute the
code that belongs to it. May be it used anywhere that keyboard input is required. except –
catches all errors or can catch a specific error. It is used after the try block.x = 10 + ‘Python’
#TypeError: unsupported operand type(s) …. try:

x = 10 + ‘Python’

except: print(“incompatible operand types to perform sum”)

raise – force an error to occur

o raise TypeError(“dissimilar data types”)

finally – it is an optional clause and in this block cleanup code is written here following
“try” and “except”.

37. Explain different ways to trigger/raise exceptions in your Python script.

The following are the two possible ways by which you can trigger an exception in your Python
script. They are:

(1)	 raise — it is used to manually raise an exception general-form: raise exception-name
(“message to be conveyed”)

Eg: >>> voting_age = 15

>>> if voting_age < 18: raise ValueError(“voting age should be atleast 18 and above”)
output: ValueError: voting age should be atleast 18 and above 2. assert statement assert
statements are used to tell your program to test that condition attached to assert keyword,
and trigger an exception whenever the condition becomes false. Eg: >>> a = -10 >>> assert
a > 0 #to raise an exception whenever a is a negative number output: AssertionError Another

5.42 Problem Solving and Python Programming

way of raising and exception can be done by making a programming mistake, but that’s not
usually a good way of triggering an exception.

38. How do you check the file existence and their types in python?

os.path.exists() – use this method to check for the existence of a file. It returns True if the file
exists, false otherwise. Eg: import os; os.path.exists(‘/etc/hosts’)

os.path.isfile() – this method is used to check whether the give path references a file or not. It
returns True if the path references to a file, else it returns false. Eg: import os; os.path.isfile(‘/
etc/hosts’)

os.path.isdir() – this method is used to check whether the give path references a directory or
not. It returns

True if the path references to a directory, else it returns false. Eg: import os; os.path.isfile(‘/etc/
hosts’)

os.path.getsize() – returns the size of the given file

os.path.getmtime() – returns the timestamp of the given path.

