
UNIT – 3

CONTROL FLOW, FUNCTIONS

3.1 CONDITIONALS
3.1.1 Boolean values and operator

The Boolean values are True and False. The relational operators such as = = , !=, > , < ,
>= , <= and the logical operators such as and, or, not are the Boolean operators. The statement
that prints either true or false is a Boolean expression. The following examples use the operator !=,
which compares two operands and produces ‘True’ if they are not equal and ‘False’ otherwise:

>>> 5 != 5

True

>>> 5 != 6

False

So, ‘True’ and ‘False’ are special values which belong to the Boolean type; they are not
strings (case sensitive):

To know the type of data, the following example can be used.

>>> type(True)

<type ‘bool’>

>>> type(False)

<type ‘bool’>

Boolean function works with relational operator, string comparison and logical operators.

3.1.2 Relational Operators
Relational operators compares values and evaluate single value either true or false

The relational operators are as follows:
x == y # x is equal to y
x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

3.2 Problem Solving and Python Programming

Simple program to explain relation operators for Boolean conditions
x = 10

y = 12

Output: x > y is False

print(‘x > y is’,x>y)

Output: x < y is True

print(‘x < y is’,x<y)

Output: x == y is False

print(‘x == y is’,x==y)

Output: x != y is True

print(‘x != y is’,x!=y)

Output: x >= y is False

print(‘x >= y is’,x>=y)

Output: x <= y is True

print(‘x <= y is’,x<=y)

The result is :

x > y is False

x < y is True

x == y is False

x != y is True

x >= y is False

x <= y is True

3.1.3 String Operators:
Boolean expression can be used in string functions. In Python, strings differ in both lower

and upper case.

For example,

x== “Sunday”

y= “sunday”

print (“x==y:”, x==y)

x==y : False

Control Flow, Functions 3.3

3.1.4 Logical Operators
There are three logical operators: and, or, and not. The semantics of these operators is

related to their meaning in English.

For example,

1. and opertator: Returns true only when both expression is true

(x > 0) and (x < 10)

 ▪ True only if x is greater than 0 and less than 10.

 ▪ Otherwise False

2. or operator: Returns true if any one expression is true

(n%2 == 0) or (n%3 == 0)

 ▪ True if either of the conditions is true, that is, if the number is divisible by 2.

 ▪ otherwise False

3. not operator: not operator negates a Boolean expression

 ▪ not (x > y)

 ▪ True if x > y is False

 ▪ False if x>y is True

Normally the operands of the logical operators must be Boolean expressions. However,
Python is very flexible. Any nonzero number is interpreted as “True.”

Example:

>>> 11 and True

True

Program to explain logical operations for boolean conditions
x = True

y = False

Output: x and y is False

print(‘x and y is’,x and y)

Output: x or y is True

print(‘x or y is’,x or y)

Output: not x is False

print(‘not x is’,not x)

3.4 Problem Solving and Python Programming

The result is:

x and y is False

x or y is True

not x is False

3.2 CONDITIONAL STATEMENT
3.2.1 Conditional (if)

Conditional statements provide the ability to check conditions and control the program
execution accordingly. The simplest form of conditional statement is the if statement. The syntax of
if statement is given below.

Syntax :

if test expression:

statement(s)

(or)

if test expression: statement

The program evaluates the test expression and will execute statement(s) only if the
text expression is True. If the text expression is False, the statement(s) is not executed.

Flowchart

Condition

Body of ‘if
statement’

Fig 3.1. Operatiion of if... statement

Example:

if x > 0 : print ‘x is positive’

In the above example, if x>0 becomes true, then the indented print statement gets executed
to print ‘x is positive’. Otherwise, control skips after the print statement.

if statements consists of boolean expression followed by one or more statements. There is no
limit on the number of statements appear in the body, but there has to be at least one For example,

Control Flow, Functions 3.5

var = 24

if (var % 2 ==0):

 print “Even number”

 print “The even number is “, var

Occasionally, a body with no statements is used. In that case, you can use the pass statement,
which does nothing. For example,

if x < 0:

pass # need to handle negative values!

The statement which comes after condition checking and : symbol requires indentation if
the statement is typed in next line.

For example to check the number is odd or even,

Program code:

num = 5

if (num%2) != 0:

 print(num, “is odd number.”)

print(“This is always printed.”)

num = 4

if (num%2) == 0:

 print(num, “is even number.”)

print(“This is also always printed.”)

Result:
5 is odd number.
This is always printed.
4 is even number.
This is also always printed.

One more example to explain if statement.
program to check whether the year is leap year or not.

Program code:

year = 2016

if (num%4) != 0:

 print(year, “is not leap year.”)

print(“This is always printed.”)

3.6 Problem Solving and Python Programming

if (year%4) == 0:

 print(year, “is leap year.”)

print(“This is also always printed.”)

Result:
This is always printed.
2016 is leap year.
This is also always printed.

3.2.2 if...else Statement
The if…else statement is called alternative execution, in which there are two possibilities

and the condition determines which one gets executed. The syntax of if…else statement is given
below.

Syntax of if...else

if test expression:

 Body of if

else:

 Body of else

The if...else statement evaluates the test expression and will execute body of
if only when test condition is True. And if the condition is False, body of else is executed.
Indentation is used to separate the blocks. Fig.3.2. illustrates the flow of if… else statement

Flowchart

Fig.3.2. Operation of if.. else statement

program to check whether the year is leap year or not using if…else statement.

Program code:

year = 2016

Control Flow, Functions 3.7

if (year % 4) == 0:

 print (year, “is leap year.”)

else:

 print (year, “is not leap year.”)

Result:
2016 is leap year.

If the remainder when year is divided by 4 is 0, then the program prints that the year is leap
year. If the condition is false, then the else part body will be executed.

Python Program to Check if a Number is Odd or Even
Python program to check if the input number is odd or even.

A number is even if it divides completely by 2 and gives a remainder of 0.

If remainder is 1, it is odd number.

num = int(input(“Enter a number: “))

if (num % 2) == 0:

 print(“{0} is Even”.format(num))

else:

 print(“{0} is Odd”.format(num))

The result is:

Enter a number: 43

43 is Odd

If the remainder when x is divided by 2 is 0, then x is even, and the program displays a
message x is even. If the condition is false, then x is odd , so the second set of statements is executed.
Since the condition must be true or false, exactly one of the alternatives will be executed. The
alternatives are called branches, because they are branches in the flow of execution.

3.2.3 Chained conditionals (if-elif-else)
Chained conditionals (if-elif-else) allows more than two possibilities and need more than

two branches. The syntax of if-elif-else is shown below.The flow of if.. elif.. else statement is
illustrated in the Fig.3.3.

Syntax of if...elif...else

if test expression:

 Body of if

elif test expression:

3.8 Problem Solving and Python Programming

 Body of elif

else:

 Body of else

Flowchart

Fig.3.3. Operation of if … elif….Statement

The example explains the if-elif-else:

if x < y:

print ‘x is less than y’

elif x > y:

print ‘x is greater than y’

else:

print ‘x and y are equal’

Here, elif is an abbreviation of “else if.” However, exactly one branch will be executed.
There is no limit on the number of elif statements. The else statement body will be at the end, but
there doesn’t have to be one. Consider the following example as an example. In this draw_a(),
draw_b() and draw_c() are the functions which are explained later in this chapter.

if choice == ‘a’:

raw_a()

elif choice == ‘b’:

Control Flow, Functions 3.9

draw_b()

elif choice == ‘c’:

draw_c()

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch executes, and the statement ends. Even if more than one
condition is true, only the first true branch executes.

Program code:

num = 5.4

if num > 0:

 print(“Positive number”)

elif num == 0:

 print(“Zero”)

else:

 print(“Negative number”)

Result:
Positive number

Python Program to Find the Largest Among Three Numbers
Python program to find the largest number among the three input numbers

a = int(input(“Enter first number: “))
b = int(input(“Enter second number: “))
c = int(input(“Enter third number: “))
if (a > b) and (a > c):
 largest = a
elif (b > a) and (b > c):
 largest = b
else:
 largest = c
print(“The largest number between”,a,”,”,b,”and”,c,”is”,largest)

The result is:
Enter first number: 4
Enter second number: 56

3.10 Problem Solving and Python Programming

Enter third number: 6
(‘The largest number between’, 4.0, ‘,’, 56.0, ‘and’, 6.0, ‘is’, 56.0)

3.2.4 Nested conditionals
The conditional statement is written within another conditional statement. This is called

nested conditionals. Any number of conditional statements can be nested inside one another. To
indicate the level of nesting indentation is used. The structure of nested conditionals is shown below.

if test expression:
 Body of if
else:
 if test expression:
 Body of if
else:
 if test expression:
 Body of if
:
:
else:
 Body of else

The following programs explain nested conditional.

Program to compare the values of x and y

x=3
y=4
if x == y:
 print ‘x and y are equal’
else:
if x < y:
 print ‘x is less than y’
else:
 print ‘x is greater than y’

In this program the variables x and y are assigned with values 3 and 4 respectively. In the
first If statement it checks whether x is equal to y. If it is true, then prints x and y are equal. If it
is false, it executes the else part. Here, the else part contains the if statement (Nested if) checks
whether x is lesser than y. If it is true, then it prints x is less than y. If it is false, then it prints x is
greater than y that is the statement in else part.

Control Flow, Functions 3.11

program to check whether the number is positive , negative or zero

num = float(input(“Enter a number: “)) # to get input from user
if num >= 0:
 if num == 0:
 print(“Zero”)
 else:
 print(“Positive number”)
else:
 print(“Negative number”)

The outer conditional if num>0 contains two branches. The first branch contains a simple
statement. The second branch contains another if statement, which has two, branches of its own.
Those two branches are both simple statements, although they could have been conditional statements
as well. The nested conditionals are very difficult to understand quickly; even the indentation of the
statements makes the structure clear.

3.3 ITERATION
3.3.1 State of a variable

It is possible to have more than one assignment for the same variable. The value which is
assigned at the last is given to the variable. The new assignment makes an existing variable assigned
with new value by replacing the old value.

For example, consider the following multiple assignments.

x=5

y=3

x=4

print x

print y

The result is
4
3

The variable x is first assigned with 5 then it is assigned with 4. The last assignment statement
x=4 replaces the old value of x (x=5).

Consider the following program code for multiple assignments.

x = 5

y = a # x and y are now equal

x = 3 # x and y are no longer equal

3.12 Problem Solving and Python Programming

print x

print y

The result is
3
5

Here the variable x is assigned with the value 5. The variable y is assigned with the value
of x. Finally, the value of x is updated to 3. So, the value 3 is assigned to x. This is called state of
the variable.

The following code can also be an example for updating the variable

x=0

x=x+2

print x

The result is
2

Initially x is assigned with the value zero. The value of x is incremented by the value two.
So it is updated as the value 2 (0+2).

3.3.2 Looping statements
Normally, program statements are executed sequentially one after another. In some situations,

a block of code needs to be executed for several numbers of times. These are repetitive program
codes, the computers have to perform to complete tasks. The computers are used to automate the
repetitive tasks. Programming languages present various control structures like looping statements
which allow for more complicated execution paths. A loop statement allows us to execute a statement
or group of statements multiple times (iterations). The following types of loops are used in Python
programming language to handle looping requirements.

Loop Type Description

while loop This loop starts with condition checking. It repeats the execution a statement
or group of statements while the given condition is TRUE. Every time it
tests the condition before executing the loop body.

for loop It executes a statement or a group of statements multiple times and
abbreviates the code that manages the loop variable.

nested loops One or more loops used in another loops.

(i) While loop
The while loop is used to execute a block of code till the test condition is true. In each

iteration, before executing the program code, the test expression will be evaluated. It stops the
execution when the test expression is false. The syntax for while loop is given below.

Control Flow, Functions 3.13

Syntax of while Loop in Python

while test_expression:

 Body of while

The body of the loop is apparent through indentation used. The loop body starts with
indentation and the first unintended statement denotes the end. The nonzero value is considered as
True in python. The Fig.3.4 depicts the flow of while loop.

Flowchart:

Fig.3.4. Operation of while statement

The flow of execution for a while statement is explained as follows:

(1) Evaluate the test condition, yielding True or False.

(2) If the condition is false, exit the while statement and continue execution at the next
statement.

(3) If the condition is true, execute the body and then go back to step 1.

This type of flow of execution is called a loop as the third step loops back around to the
top. The body of the loop should change the value of one or more variables so that ultimately the
condition becomes false and the loop terminates. Otherwise the loop will iterate forever, which is
called an infinite loop.

Simple program to explain while statement
Prints out 0,1,2,3,4

count = 0

while count < 5:

 print(count)

 count += 1 # This is the same as count = count + 1

3.14 Problem Solving and Python Programming

The result is:
0
1
2
3
4

The following program may illustrate the working of while loop statements.
Program is to add natural numbers

sum= 1+2+……+n
Program to add natural numbers upto n
 n = int(input(“Enter n: “)) # To take input from the user
 sum = 0 # initialize sum
 i = 1 # initialize counter (loop) variable
while i <= n: # while loop begins
 sum = sum + i
 i = i+1 # update loop variable
print (“The sum is”, sum) # print the sum

Result:
Enter n: 10
The sum is 55

In this program the variable n is used to get integer from the user. The sum and loop variables
are initialized with zero and one respectively. The while loop continues till the loop variable value
is lesser than n. In each iteration the sum value is added with loop variable value. The increment
statement is used to update the loop variable.

While with else statement:
When ‘ while’ statement is used with else , then the else statement is executed only when

the condition is false. Both statements executes only when certain condition is satisfied

Syntax:
While (expression):
 Statement_1
 Statement_2

Else:
 Statement_3
 Statement_4

Control Flow, Functions 3.15

In the above syntax, the while block is repeatedly tests the condition for the given expression
and executes the first block of statement if it is true otherwise the else clause is executed . It might
be tested for the first time and if the loop breaks it will not execute.

For example,
>>>a=0
>>>b=0
>>>while (a<6):
 b=b+a
 a=a+1
 else:
 print(“Sum of first 5 integers:”,b)

Output:
The sum of first 5 integers: 15

(ii) For loop
The for loop in Python is used to iterate over a sequence of elements (list, tuple, string) or

other iterable objects. Iterating over a sequence of items is called traversal. The syntax of for loop
is shown below.

Syntax of for Loop in Python

for val in sequence:

Body of for

The val is the loop variable which takes the value of the item inside the sequence on each
iteration. The loop continues until the last element is reached in the sequence. The body of for loop
is marked using indentation. The Fig. 3.5 illustrates the flow of ‘for loop’.

Fig.3.5. Operation of For loop

3.16 Problem Solving and Python Programming

Program to find the sum of all numbers stored in a list
List of numbers

numbers = [3, 2, 5, 7, 9, 1, 4, 6, 8]
variable to store the sum
total= 0
iterate over the list
for item in numbers:
 total = total+item # indentation is used to separate the loop body
print the result
print (“The total is”, total)

Result:
The total is 45

For loop using range() function:
The body of the loop is apparent through indentation used. The loop body starts with

indentation and the first unintended statement denotes the end. To generate the sequence of numbers
range () function is used. The range function can be used in three different ways.

Range (n) # generates numbers from 0 to n-1

Range (m,n) # generates numbers for m to n-1

Range(m,n, x) # generates numers from m upto n-1 with skip counting of x

The following program code generates the different sequence of elements.
print(range(5))
print(list(range(5)))
print(list(range(2, 5)))
print(list(range(2, 15, 3)))

Result:
range (0, 5)
[0, 1, 2, 3, 4]
[2, 3, 4]
[2, 5, 8, 11, 14]

Python program to print range values
Prints out the numbers 0,1,2,3,4

print ‘first loop values’
for x in range(5):
 print(x)

Control Flow, Functions 3.17

Prints out 3,4,5
print ‘second loop values’
for x in range(3, 6):
 print(x)
Prints out 3,5,7
print ‘third loop values’
for x in range(3, 8, 2):
 print(x)

The result is:
first loop values
0
1
2
3
4
second loop values
3
4
5
third loop values
3
5
7

The range() function can be used in for loops to iterate through a sequence of numbers. It
can be combined with the len() function to iterate through a sequence using indexing. The following
example illustrate this.

Program to iterate through a list using indexing
programming_languages = [‘C’, ‘C++’, ‘Python’]

iterate over the list using index

i is loop variable

for i in range(len(programming_languages)):

 print(“ The programming-language is”, programming_languages[i]).

The result is :
The programming-language is C
The programming-language is C++
The programming-language is Python

3.18 Problem Solving and Python Programming

Here, range function takes the values from zero to two. The len() function is used to find
length of the sequence. The following program also used to illustrate the working of for loop
statements using range function. The program is to add natural numbers.

sum= 1+2+……+n-1

Program to add natural numbers upto n-1

n = int(input(“Enter n: “)) # To take input from the user

sum = 0 # initialize sum

 for i in range(1, n): # while loop begins

 sum = sum + i

 print (“The sum is”, sum) # print the sum

Result:
Enter n: 10
The sum is 45

Here, the range of sequence is from 1 to n-1. The loop variable i started with 1.In each
iteration, the value of loop variable is added with sum. The loop continues for n-1 values. The value
of the variable n is obtained from the user.

Surprisingly, in python for loop is used with else part. This is optional. The else part of for
loop is executed if the items in the sequence used in for loop exhausts. The for loop’s else part get
executed if no break statement occurs in for loop. The break statement (see later) can be used to stop
a for loop. In such case, the else part is ignored. Here is an example to illustrate this concept

numbers = [0, 1, 5, 10, 15, 20]

for i in numbers:

 print(i)

else:

 print(“No items left.”).

The result is:
0
1
5
10
15
20
No items left.

In this program the list numbers is created to have the values 0,1,5,10, 15, 20. The for loop
is accessing the list through the loop variable sequentially. It prints the numbers one by one in each

Control Flow, Functions 3.19

iteration until the loop exhausts. When there is no element in the list to access, it will print statement
in else part that is No items left.

Python program to display all the prime numbers within the specified range
change the values of lower and upper for a different result

lower = int(input(“Enter lower range: “))

upper = int(input(“Enter upper range: “))

print(“Prime numbers between”, lower, “and”, upper,”are:”)

for num in range(lower,upper + 1):

 # prime numbers are greater than 1

 if num > 1:

 for i in range(2,num):

 if (num % i) == 0:

 break

 else:

 print(num)

The result is :
Enter lower range: 100
Enter upper range: 150
(‘Prime numbers between’, 100, ‘and’, 150, ‘are:’)
101
103
107
109
113
127
131
137
139
149

In this program, the lower and upper values are obtained from user. Here, the outer for loop
ranges from lower to upper + 1 value. Since the prime numbers are started with greater than 1, the
if loop checks for num>1. It executes the inner for loop for the range 2 to num-1 for every iteration
of the outer for loop. If the variable num is divided by any number from 2 to num-1 completely,
it breaks the inner for loop and access the next element. If the variable num is not divided by any
number from 2 to num-1, then it prints the number (executes the for-else part).

3.20 Problem Solving and Python Programming

Python Program to Find Armstrong Number in an Interval
Program to check Armstrong numbers in some interval
To take input from the user
lower = int(input(“Enter lower range: “))
upper = int(input(“Enter upper range: “))
for num in range(lower, upper + 1):
 # order of number
 order = len(str(num))
 # initialize sum
 sum = 0
 # find the sum of the cube of each digit
 temp = num
 while temp > 0:
 digit = temp % 10
 sum += digit ** order
 temp //= 10
 if num == sum:
 print(num)

The result is:
Enter lower range: 100
Enter upper range: 500
153
370
371
407

For loop with else statement
For loop can be used with if statement. This else part is executed when the items in the

sequence used in the loop exhausts.

For example,
 series = [0,1,2,3,4]
 for i in series
 print(i)
 else:
 print(“No items”)

Control Flow, Functions 3.21

Output:
1
2
3
4
No items

For loop using string function:
For loop can also be used in strings.

For example,

Weeks=[“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”]

 for m in months:

print (m)

Output:
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

Nested Loops:
Nested loops are allowed in Python. The structure of the nested loop is shown in as below:

Syntax for nested for loop:

for <variable> in <sequence>:

 for <variable> in sequence>:

 <statements>

 <statements>

In the above syntax, the outer loop is encountered first and the inner nested loop is triggered
and then the control returns back to the top of the outerloop completing the second iteration
triggering the nested loop. The same process I repeated again until the sequence getw completed
or either with the break statement. The following example illustrates the nested for loop .

Example:

num1=[1,5]

num2=[2,3,4]

3.22 Problem Solving and Python Programming

for n1 in num1:

 print(n1)

 for n2 in num2:

 print(n2)

Output:
1
2
3
4
5
2
3
4

(iii) Loop Control Statements

Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed. Python supports
the following control statements.

Control Statement Description

break statement It terminates or breaks the loop statement and transfers flow of
execution to the statement immediately following the loop.

continue statement Causes the loop to skip the rest of its body and immediately
retest its condition before reiterating.

pass statement
The pass statement in Python is used when a statement is
required syntactically but you do not want any command or code
to execute.

Break statement

The break statement is used to change or alter the flow of execution. The looping statements
iterates till the test expression is true. In some cases, the current iteration of the loop need to be
terminated. The break statement is used in this case. The break statement terminates the loop
containing it. Therefore, control of the program transfers to the statement immediately after the
body of the loop. If break statement is used inside a nested loop (loop inside another loop), break
will terminate the innermost loop.

Syntax of break

break

Control Flow, Functions 3.23

The working of break statement in for loop is explained as follows

For var in sequence:

#codes inside the loop

if condition: # it is true; executes break

 break

codes inside the loop

#codes outside the loop

While test expression:

#codes inside the loop

if condition: # it is true; executes break

 break

codes inside the loop

#codes outside the loop

A simple program to illustrate break statement
program to print str

for val in “string”:

 if val == “i”:

 break

 print(val)

print(“The end”)

The result is:
s
t
r
The end

In this program val is loop variable to access the string. The if condition becomes true when
value of the variable val is i. When it is true, it breaks the loop and prints The end.

Simple program to explain break statement.
Prints out 1,2,3,4
count = 1
while True:
 print(count)
 count += 1

3.24 Problem Solving and Python Programming

 if count >= 5:
 break

The result is :
1
2
3
4

This program prints the numbers from 1 to 4. When the count value is greater than or equal
to 5 it breaks the loop and stops the execution.

Continue statement
The continue statement is used to skip the rest of the code inside a loop for the current

iteration only. Loop does not terminate but continues on with the next iteration.

Syntax of Continue:

continue

The working of continue statement in while loop is shown below.
While test expression:

#codes inside the loop
if condition: # it is true; executes continue

 continue
codes inside the loop

#codes outside the loop

A simple program to illustrate working of continue statement.
Program to show the use of continue statement inside loops

for val in “string”:
 if val == “i”:
 continue
 print(val)
print(“The end”)

The result is :
s
t
r
n
g
The end

Control Flow, Functions 3.25

In this program the loop variable val prints the character one by one. When the value of
variable val becomes i, it executes continue statement. It skips the rest of the loop body (not prints
values of i) and continue from the next element in the string.

Simple program to print odd numbers
Prints out only odd numbers 1, 3,5,7,9

for x in range(10):

 # Check if x is even

 if x % 2 == 0:

 continue

 print(x)

The result is :
1
3
5
7
9

This program prints the odd numbers from 1 to 10. The if condition checks value of x
belongs to even or odd. If it is odd, the if condition fails. So it will print the x value. If it is even the
continue statement is executed to start from the next element.

Pass Statement
Pass statement executes nothing. It results in No operation. In Python programming, pass

is a null statement. The simple difference between a comment and pass statement in Python is
that, the interpreter ignores a comment entirely, but not the pass statement.

Syntax of pass

pass

The pass statement can be used in places where the program code cannot be left as blank.
But that can be written in future. The pass is used as placeholders. Pass is used in to construct
program codes that do nothing.

Simple program to explain pass statement
pass is just a placeholder for
the for loop body will be implemented in future.

sequence = {‘p’, ‘a’, ‘s’, ‘s’}
for val in sequence:
 pass

3.26 Problem Solving and Python Programming

The result is:
no output will be displayed

In this program the variable sequence is assigned with some sequence of letters. The loop
variable val is used to access the values in the sequence. But the loop contains the pass which
implies no operation execution. So using pass statement an empty function or class can be created
as follows.

def function(args):

 pass # the function does nothing

class example:

 pass # empty class

The function defines nothing the implementation may be written in future. Likewise, the
class example does nothing.

3.4 VARIABLES AND SCOPE
Scope of a variable specifies the part of a program where a variable is accessible and lifetime

of a variable specifies the time period in which the variable has valid memory.

Python uses LEGB Rule for scope resolution. It stands for

 Local -> Enclosed -> Global -> Built-in

The arrows indicate the direction of the namespace-hierarchy search order.

 • Local can be inside a function or class method, for example.

 • Enclosed can be its enclosing function, e.g., if a function is wrapped inside another
function.

 • Global refers to the uppermost level of the executing script itself, and

 • Built-in are special names that Python reserves for itself.

A variable can be either of global or local scope. A global variable is a variable declared in
the main body of the source code, outside all functions. It will be visible throughout the program.
Whereas a local variable is one declared within the body of a function or a block. It is accessible
only inside the function and gets deleted at the end of function.

Example:

This is a global variable

a = 0

if a == 0:

 # This is still a global variable

 b = 1

def my_function(c):

Control Flow, Functions 3.27

 # this is a local variable

 d = 3

 print(c)

 print(d)

Now we call the function, passing the value 7 as the first and only parameter

my_function(7)

a and b still exist

print(a)

print(b)

c and d don’t exist anymore -- these statements will give us name errors!

print(c)

print(d)

3.4.1 Access a function inside a function
Python supports definition of a function inside another function.

def test(a):

 def add(b):

 nonlocal a

 a += 1

 return a+b

 return add

func= test(4)

print(func(4))

Sample input/output:
9

In this program, the function add() is nested inside test(). So it could not be called directly.
Calling the function add(4) will result in a error. First, the outer function test(4) is called, which
returns the object of inner function add(). The return function object can then be used to refer the
inner function. The use of nonlocal keyword is explained in next section.

3.4.2 Scope Rules in Functions
When a name is used in a program, Python creates, changes, or looks up the name in

namespace, a place where names live. In Python as names aren’t declared ahead of time, it uses
the assignment of a name to associate it with a particular namespace. By default functions add an
extra namespace layer to the programs. Names assigned inside a function are associated with that
function’s namespace.

3.28 Problem Solving and Python Programming

global scope

a = 10 # a and func assigned in module: global

def func(b): # b and c assigned in function: locals

 # local scope

 c = a + b # a is not assigned, so it’s a global

 return c

print(func(1)) # func in module: result=11

print c #NameError: name ‘z’ is not defined

In this program, name a and func() are assigned in module (outside block/function), resulting
in global scope. Whereas name b and c are assigned in function, resulting in local scope. Local
variables of a function can only be used inside its function. Hence c is not accessible outside func().

Python 3 introduced the nonlocal keyword that allows you to assign to variables in an
outer, but non-global, scope. The following programs explicate the difference between using
and using nonlocal keyword.

Without using nonlocal
x = 0 # x=0 assigned outside any function. (x=0 global)

def outer():

 x = 1 # x=1 assigned inside outer(). (x=1 local to outer())

 def inner():

 x = 2 # x=2 assigned inside inner(). (x=2 local to inner())

 print(“inner:”, x)

 inner()

 print(“outer:”, x)

outer()

print(“global:”, x)

Sample input/output:
inner: 2
outer: 1
global: 0

Using nonlocal
x = 0

def outer():

 x = 1

Control Flow, Functions 3.29

 def inner():

 nonlocal x # nonlocal permits the access to x=1 assigned in outer() but not to
global

 #variable x=0

 x = 2

 print(“inner:”, x)

 inner()

 print(“outer:”, x)

outer()

print(“global:”, x)

Sample input/output:
inner: 2
outer: 2
global: 0

Using Global
x = 0

def outer():

 x = 1

 def inner():

 global x # global permits access to x=0 assigned outside all function but not
to x=l

 # assigned in outer()

 x = 2

 print(“inner:”, x)

 inner()

 print(“outer:”, x)

outer()

print(“global:”, x)

Sample input/output:
inner: 2
outer: 1
global: 2

3.30 Problem Solving and Python Programming

Functions provide a nested namespace, which localizes the names they use, so that names
inside the function won’t clash with those names used in other module or function. When a name
is used in a function, Python creates the name in local scope, unless it is declared as global in that
function using global keyword.

Without Global
def add(value1,value2):

result = value1 + value2

no1=3

no2=2

add(no1,no2)

print result # NameError: name ‘result’ is not defined

This program results in an error as result, the local variable of function add() could not be
accessed outside the function.

Figure 3.1. Stack Diagram.

Using Global
def add(value1,value2):

global result

result = value1 + value2

no1=3

no2=2

add(no1,no2)

print result #No Error – result is a global variable; it generates the output as 5

In this program global keyword specifies result as global variable which means that we can
access that variable outside the function as well.

3.4.3 STACK DIAGRAMS
Stack diagram is a graphical representation of a stack of functions, their variables, and the

values they refer to. Each function is represented by a frame. Frame is a box in a stack diagram

Control Flow, Functions 3.31

that represents a function call. It contains local variables and parameters of the function. The stack
diagram for preceding program without global is shown in Figure. 3.1.

def add(a,b):

 c=a+b

 print c

 sub(a,b)

def sub(x,y):

 z=x-y

 print z

n1=10

n2=5

add(n1,n2)

Sample output:
15
5

The stack diagram for this example is shown in Figure.3.2. The order of frames in the
stack (top to bottom) represents the order of function call. The flow of execution starts from main
module. <module> frame indicates the variables n1,n2 which are assigned outside any function.
The function add(n1,n2) was called from main module, which in turn calls sub(a,b). add frame
includes its parameters a, b and local variable c. sub frame includes its parameters x, y and local
variable z. Each parameter refers to the same value of its arguments. Hence a, b refers to the value
of its arguments n1, n2 and x, y refers to the value of its arguments a, b.

Figure 3.2. Stack Diagram

When an error occurs during a function call, Python prints the name of the function, and
the name of the function that called it, followed by name of function that called that and so on. The
Traceback module works with the call stack to produce error messages.

For example, if you try to access c in sub(), you will get an following NameError.

3.32 Problem Solving and Python Programming

Traceback (most recent call last):

File “main. py”, line 11, in <module>

 add(n1,n2)

File “main.py”, line 4, in add

 sub(a,b)

File “main.py”, line 8, in sub

 print c

NameError: global name ‘c’ is not defined

This list of functions is called a traceback. It specifies the filename, error line number, and
functions name that are being executed. The order of the function in Traceback is same as the order
of frames in stack diagram.

3.4.4 FRUITFUL FUNCTIONS
Fruitful functions are functions that return value. While using fruitful function, the return

value must be handled properly by assigning it to a variable or use it as part of expression.
import math
x=math.sin(90)+1
print x # Output is 1.8939966636

In a script, calling a fruitful function without assigning the return value will result in loss.
import math
math.sin(90) # no output - as the return value is not assigned

3.4.5 VOID FUNCTIONS
Void function is a function that always returns None. It represents the absence of value.

def show():
print ‘Welcome!!!’
result=show()
print result

Sample Output:
Welcome!!!
None

The value is None which is not similar to string “None”. None is a special value with its
own type.

print type(None)

Control Flow, Functions 3.33

Sample Output:
<type ‘NoneType’>

3.4.6 IMPORTING MODULES
Module is a Python file that contains collection of related variables, functions, classes and

other definitions. Python provides at least three different ways to import modules.

Method 1: Using import
Syntax:

import X

It imports the module X, and creates a reference to that module in the current namespace.
Here X.name refers to the things defined in module X.

import datetime
tday=datetime.date.today()
print tday

Sample Output:
2017-04-15

Method 2: Importing individual objects
Syntax:

from X import *

from X import a,b,c

It imports the module X, and creates references in the current namespace to all public objects
defined by that module. You can simply use a plain name to refer to things defined in module X.
* indicates that all objects under module X can be used. Whereas a, b, c specifies that only a, b, c
objects from module X can be used in program.

from datetime import date

tday=date.today()

print tday

Sample Output:
2017-04-15

Method 3: __import__(‘’)
Syntax:

X = __import__(‘X’)

3.34 Problem Solving and Python Programming

It works like import X, with the following differences:
(1) pass the module name as a string, and
(2) explicitly assign it to a variable in your current namespace.

i = __import__(‘math’)
print i.pi

Sample Output:
3.14159265359

3.4.7 INPUT FROM KEYBOARD
The Input() Function

To read input from keyboard, Python provides input() function with prompt string as a
optional parameter. The input of the user will be interpreted. For example, if the user enters an
integer value, the input function returns this integer value. If the user on the other hand inputs a list,
the function will return a list.

Example:
age=input(“Enter your age:”)
print ‘Your age is”, age, ‘Type:”, type(age)
color=input(“Enter your favorite color:”)
print (color, type(color))
Sample Input/Output:
Enter your age:21
Your age is 21 Type: <type ‘int’>
Enter your favorite color:[‘red’,’green’,’blue’]
([‘red’, ‘green’, ‘blue’], <type ‘list’>)

Input with raw_input()
The function raw_input() does not interpret the input. It always returns the input of the user

without changes. This raw input can be changed into the data type needed for the algorithm by using
a casting or the eval function.

age = raw_input(“Your age? “)

print(age, type(age))

Sample input/output:
Your age? 38
(‘38’, <type ‘str’>)
age = int(raw_input(“Your age? “))
print(age, type(age))

Control Flow, Functions 3.35

Sample input/output:
Your age? 42
(42, <type ‘int’>)

3.4.8 INCREMENTAL DEVELOPMENT

Complex programs with larger functions needs more time in debugging. Lengthy debugging
sessions could be avoided by a process called incremental development. This process involves
adding and testing small amount of code at a time. In general, code could be developed incrementally.

Example: Find the distance between two points, given by the coordinates (x1, y1) and
(x2, y2). By the Pythagorean theorem, the distance is:

2 2
2 1 2 1distance= () ()x x y y− + −

Step 1: Identify the input parameters and return value of the function. In this example, the
inputs are two points which represents four numbers (x1,y1) and (x2,y2). The return
value is the distance, a floating point number.

The outline of the function:

def distance(x1,y1,x2,y2):

 return 0.0

Test the function by calling it with some arguments. This basic version does not compute
distance and will always return 0.0.

>>>distance(1,3,5,8)

0.0

Step 2: At this point we have confirmed that the function is syntactically correct, and we can
start adding code to the body. In this step, add code to compute the differences x2-x1
and y2-y1.

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 print ‘dx is’, dx

 print ‘dy is’, dy

 return 0.0

If this code works correctly it should display ‘dx is 4’ and ‘dy is 5’. If so, we could
confirm that the function parameters and function computation are working correctly. If
not, there are only few lines to check.

3.36 Problem Solving and Python Programming

Step 3: Now compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 print ‘dsquared is: ‘, dsquared

 return 0.0

Run the program at this stage and verify the output (which should be 41).

Step 4: Compute square root of the value using math.sqrt().

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 result = math.sqrt(dsquared)

 return result

If the return result is correct, the coding is over. Else, print the value of the result inside
the function and verify. Once the result obtained is correct, remove the print statement
from the function. Code like that is called scaffolding because it is helpful for building
the program but is not part of the final product.

In initial steps, we used to add one or two lines of code at a time. Later we extend our coding
in to bigger chunks. This method of coding reduces lot of debugging time. The key aspects of the
process are:

3.4.8.1 Start with a working program and make small incremental changes. At any point, if there is
an error, you should have a good idea where it is.

3.4.8.2 Use temporary variables to hold intermediate values so you can display and check them.

3.4.8.3 Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not make the
program difficult to read.

3.4.9 FUNCTION COMPOSITION
Function composition is the ability to call one function from within another function. It is

a way of combining functions such that the result of each function is passed as the argument of the
next function. For example, the composition of two functions f and g is denoted f(g(x)). x is the
argument of g, the result of g is passed as the argument of f and the result of the composition is the
result of f.

Control Flow, Functions 3.37

Example: Compute area of circle with the given inputs center point (xc,yc) and perimeter point
(xp,yp).

Note: First find the radius of circle by computing distance between (xc,yc) and (xp,yp). Later
find the area of circle using radius.

import math
def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 result = math.sqrt(dsquared)
 return result
def area(radius):
 return (math.pi*radius*radius)
xc=input(“Enter xc”)
yc=input(“Enter yc”)
xp=input(“Enter xp”)
yp=input(“Enter yp”)
print area(distance(xc,yc,xp,yp))

Sample input/output:
Enter xc10
Enter yc10
Enter xp15
Enter yp10
78.5398163397

3.4.10 BOOLEAN FUNCTIONS
Functions can return Boolean values (True/False). They are often used in conditional

statements.

Example: Program to check for even number.
def test_even(n):
 return (n%2==0) # result of (n%2==0) is a Boolean value
no=input(“Enter a no.”)
if(test_even(no)): # Boolean functions are often used in conditions
 print ‘Even’
else:
 print ‘Odd’

3.38 Problem Solving and Python Programming

Sample input/output:
Enter a no.3
Odd

3.4.11 RECURSION
Recursion is a way of programming in which a function calls itself again and again until a

condition is true. A recursive function calls itself and has a termination condition.

Advantages of recursion
3.4.11.1 Recursive functions make the code look clean and elegant.
3.4.11.2 A complex task can be broken down into simpler sub-problems using recursion.
3.4.11.3 Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of recursion
(1) Sometimes the logic behind recursion is hard to follow through.

(2) Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

(3) Recursive functions are hard to debug.

Program for factorial computation using recursion.
The process involved in factorial computation using recursion in show in Figure.3.3. For

example 5! computation can be represented as

5!=5*4!; 4!=4*3!; 3!=3*2!; 2!=2*1!; 1!=1*0!; and 0!=1
 Factorial (5)

Return 5 * Factorial (4) =120

Return 4 * Factorial (3) = 24

Return 3 * Factorial (2) = 6

Return 2 * Factorial (1) =2

Return 1 * Factorial (0) =1

1

Figure 3.3. Factorial computation

Control Flow, Functions 3.39

def factorial(n):
 if n ==0: # base case
 return 1
 else:
 return n * factorial(n - 1)
n=input(‘Enter a number:”)
print factorial(no)

Sample Input/Output:
Enter a number:5
120

(i) Stack Diagram for Recursive Functions
Stack diagram for factorial computation using recursion is shown in Figure.3.4. For each

recursive call, a frame is added in stack. The top of the stack is _ _main_ _ frame with variable n.
The value of n varies in each frame. The bottom frame where n=0 is called the base case.

<module> n

factorial n → 3

factorial

factorial

factorial

n → 2

n → 1

n → 0

recurse → 2

recurse → 2

recurse → 2

result → 6

result → 2

result → 1

6

2

1

1

Figure 3.4. Stack Diagram for Recursion

Program to display Fibonacci sequence using recursion.
Note: A Fibonacci sequence is the integer sequence of 0, 1, 1, 2, 3, 5, 8....

The first two terms are 0 and 1. All other terms are obtained by adding the preceding two
terms. i.e. the nth term is the sum of (n-1)th and (n-2)th term.

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

3.40 Problem Solving and Python Programming

Recursive Function Beginning

def Fibonacci_series(Number):

 if(Number == 0):

 return 0

 elif(Number == 1):

 return 1

 else:

 return (Fibonacci_series(Number - 2)+ Fibonacci_series(Number - 1))

 # End of the Function

Fibonacci series will start at 0 and travel upto below number

Number = int(input(“\nPlease Enter the Range Number: “))

Find & Displaying Fibonacci series

for Num in range(0, Number):

 print(Fibonacci_series(Num))

Sample input/output:
Please Enter the Range Number: 5
0
1
1
2
3

(ii) Infinite Recursion
Infinite recursion happens when recursive function fails to reach base case. The recursive

call continues forever and the program never terminates.

def show():

 show()

show()

The program with infinite recursion runs repeatedly and terminates when the
maximum recursion depth is reached. Python reports the following error message on infinite
recursion.

File “main.py”, line 2, in show

 show()

 File “main.py”, line 2, in show

 show()

Control Flow, Functions 3.41

 File “main.py”, line 2, in show

…….

……..

RuntimeError: maximum recursion depth exceeded

3.5 STRINGS
A string is a sequence of zero or more characters. An empty string contains no characters

and has a length 0.The indices of a string’s characters are numbered from 0 from the left end and
numbered from -1 from the right end. For a string ‘WELCOME’, its index values are shown in the
following table:

Character W E L C O M E
Index from left end 0 1 2 3 4 5 6
Index from right end -7 -6 -5 -4 -3 -2 -1

3.5.1 Subscript Operator
[] is a subscript operator that is used to access the characters one at a time.

Syntax:

< stringname>[<index>]

Index within [] indicates the position of the particular character in the string and it must be
an integer expression.

Sample Code

s= “HELLO”

print s[0] # prints H

print s[3] # prints L

The subscript operator can be used within loops as shown in the following code:

s= “HELLO PYTHON!”

for index in xrange(len(s)):

 print s[index], “ is at index “, index

Output
H is at index 0
E is at index 1
L is at index 2
L is at index 3
O is at index 4
 is at index 5

3.42 Problem Solving and Python Programming

P is at index 6
Y is at index 7
T is at index 8
H is at index 9
O is at index 10
N is at index 11
! is at index 12

3.5.2 Len Function
len is a built-in function that returns the number of characters in a string.

Sample Code

s= “HELLO PYTHON!”

print “Length is “, len(s)

Sample Output
Length is 13

3.5.3 in operator
in is a boolean operator that takes two strings as its operands and returns True if the first

string appears as a substring in the second string.

Sample Code and Output
print “PY” in “HELLO PYTHON!” # prints True
print “NO” in “HELLO PYTHON!” # prints False

3.5.4 String slices
A part of a string is called slice. The operator [m:n] returns the part of the string from mth

index to nth index, including the character at mth index but excluding the character at nth index. If the
first index is omitted, the slice starts at the beginning of the string. If the second index is omitted, the
slice goes to the end of the string. If the first index is greater than or equals to the second, the slice
is an empty string. If both indices are omitted, the slice is a given string itself.

Sample Code

s=”Hello, Python!”

print s[0]

print s[1:4]

print s[:5]

print s[7:]

print s[3:3]

Control Flow, Functions 3.43

print s[5:2]

print s[:]

print s[-3:]

print s[:-3]

Sample Output
H
ell
Hello
Python!
Hello, Python!
on!
Hello, Pyth

3.5.5 Immutability
The string is an immutable data structure. This means that its characters can be accessed

but the string cannot be modified.

Sample Code and Output:
s=’hello, Python!’
s[0]=’H’
TypeError: ‘str’ object does not support item assignment

Sample Code and Output:
s=’hello, Python!’
s1=’H’+s[1:len(s)] # concatenates a new first letter onto a slice of s
print s # prints hello, Python!
print s1 # prints Hello, Python!

3.5.6 String Methods
Python consists of the following built-in methods for manipulating strings:

S.No Method Description

1 s.capitalize() Capitalizes only the first letter of a given string s

2 s.center(width, fillchar) Returns a space-padded string where a given string s is
centered within the specified width.

3 s.count(substr) Return the number of occurrences of substr within a given
string s

3.44 Problem Solving and Python Programming

S.No Method Description

4 s.endswith(substr) Boolean function that returns True, if a string s ends with
substr. Else, returns False.

5 s.find(substr) Returns the smallest index in s, if substr is found within s.
Else, returns -1.

6 s.index(substr) Similar to find(), but raises an exception if substr is not found.

7 s.isalnum() Boolean function that returns True, if s is nonempty and all
characters are alphanumeric. Else, returns False.

8 s.isalpha() Boolean function that returns true, if s is nonempty and all
characters are alphabet. Else, returns False.

9 s.isdigit() Boolean function that returns true, if s is nonempty and all
characters are digits. Else, returns False.

10 s.islower() Boolean function that returns true, if s is nonempty and all
characters are in lowercase. Else, returns False.

11 s.isupper() Boolean function that returns true, if s is nonempty and all
characters are in uppercase. Else, returns False.

12 sp.join(seq) Returns a string that is the concatenation of the set of strings
in the given sequence (seq). Separator between the elements
is sp.

13 len(s) Returns the length of the string s

14 s.lower() Returns a copy of s where all characters are in lowercase.

15 max(s) Returns the biggest alphabetical character from the string s.

16 min(s) Returns the smallest alphabetical character from the string s.

17 s.replace(old, new) Returns a copy of s after replacing all occurrences of a
substring old by a substring new.

18 s.split() Returns a list of the words in s, using any whitespace as a
delimiter.

19 s.startswith(substr) Boolean function that returns True, if a string s starts with
substr. Else, returns False.

20 s.swapcase() Returns a copy of s where all characters are case-inverted.

21 title() Returns a copy of s where all words begin with uppercase
characters.

22 s.upper() Returns a copy of s where all characters are in uppercase.

23 s.istitle() Boolean function that returns True, if a string s is in title-case.
Else, returns False.

Control Flow, Functions 3.45

Explanation with sample coding and the corresponding output is as follows:

Sample Code Sample Output Explanation

s=’hello, Python!’

print “String is: “, s

print “Length: “, len(s)

String is: hello, Python!

 Length: 14

s contains the string ‘hello, Python!’
with length 14.

print s.capitalize() Hello, python! The first letter of a given string is
capitalized.

print s.center(20) hello, Python! The given string is centered with width
20.

print s.center(20, ‘a’) aaahello, Python!aaa The given string is centered and space-
padded with width 20 and fill character
‘a’.

sub = ‘l’;

print s.count(sub) 2 Count of ‘l’ in ‘hello, Python!’.

print s.count(sub, 3, 14) 1 Count of ‘l’ in ‘hello, Python!’ from
index 3.

print s.endswith(‘on’) False ‘hello, Python!’ does not end with ‘on’.

print s.endswith(‘on!’) True ‘hello, Python!’ ends with ‘on!’.

print s.find(‘Pyth’) 7 ‘Pyth’ is found at index 7 in ‘hello,
Python!’.

print s.find(‘pyth’) -1 ‘pyth’ is not found in ‘hello, Python!’.

print s.index(‘Pyth’) 7 ‘Pyth’ is found at index 7 in ‘hello,
Python!’.

print s.isalnum() False ‘hello, Python!’ does not include a
number.

print s.isalpha() False ‘hello, Python!’ includes punctuation
symbols also.

s1=’15Aug1947’

print s1.isalnum() True

No space within the string.

‘15Aug1947’ includes both numbers
and alphabets.

print s1.isalpha() False ‘15Aug1947’ includes numbers also.

print s1.isdigit() False ‘15Aug1947’ includes alphabets also.

s2 = ‘123’;

print s2.isdigit() True

Only digit in this string.

‘123’ includes digits alone.

3.46 Problem Solving and Python Programming

print s.islower() False ‘P’ is in uppercase in ‘hello, Python!’.

print ‘abc’.islower() True All characters are in lowercase in‘abc’.

print s.isupper() False ‘P’alone is in uppercase in ‘hello,
Python!’.

print ‘ABC’.isupper() True All characters are in uppercase
in‘ABC’.

print s.lower() hello, python! All characters of ‘hello, Python!’ are
converted into lowercase.

print s.upper() HELLO, PYTHON! All characters of ‘hello, Python!’ are
converted into uppercase.

sj = ‘->’

seq = (‘a’, ‘b’, ‘c’) #

print sj.join(seq) a->b->c

This is sequence of strings.

‘a’, ‘b’, and ‘c’ are concatenated with
->

str = ‘giraffe’

print max(str)

print min(str)

r

 a

‘r’ is the biggest character in ‘giraffe’.

‘a’ is the smallest character in ‘giraffe’.

print ‘this is a tree’.
replace(‘is’, ‘was’)

thwas was a tree Every ‘is’ is replaced by ‘was’ from
‘this is a tree’.

print s.split() [‘hello,’, ‘Python!’] ‘hello, Python!’has two words ‘hello,’
and ‘Python!’, which are separated by
a whitespace.

print s.startswith(‘hell’) True ‘hello, Python!’ starts with ‘hell’.

print s.swapcase() HELLO, pYTHON! ‘hello, Python!’ is case-inverted.

print s.title() Hello, Python! First character of every word in ‘hello,
Python!’ is capitalized.

print s.istitle() False In ‘hello, Python!’, ‘h’ is in lowercase.

3.5.7 String module
The string module of Python is a file that offers additional functions, classes and variables

to manipulate standard strings. But, some methods that are available in the standard data structure
are not found in the string module (For e.g., isalpha()).

When we import a module, the following syntax is used:

import module1[, module2[,... modulen]

Control Flow, Functions 3.47

When an ‘import’ statement is encountered by the interpreter, the corresponding module(s)
is imported if it is available in the search path.

dir() Function

It returns a sorted list of strings that includes the names of all modules, functions and
variables that are defined in a module.

Sample Code using dir()

import string

content = dir(string)

print content

Sample Output:

[‘Formatter’, ‘Template’, ‘_TemplateMetaclass’, ‘__builtins__’, ‘__doc__’, ‘__
file__’, ‘__name__’, ‘__package__’, ‘_float’, ‘_idmap’, ‘_idmapL’, ‘_int’, ‘_long’,
‘_multimap’, ‘_re’, ‘ascii_letters’, ‘ascii_lowercase’, ‘ascii_uppercase’, ‘atof’,
‘atof_error’, ‘atoi’, ‘atoi_error’, ‘atol’, ‘atol_error’, ‘capitalize’, ‘capwords’,
‘center’, ‘count’, ‘digits’, ‘expandtabs’, ‘find’, ‘hexdigits’, ‘index’, ‘index_error’,
‘join’, ‘joinfields’, ‘letters’, ‘ljust’, ‘lower’, ‘lowercase’, ‘lstrip’, ‘maketrans’,
‘octdigits’, ‘printable’, ‘punctuation’, ‘replace’, ‘rfind’, ‘rindex’, ‘rjust’, ‘rsplit’,
‘rstrip’, ‘split’, ‘splitfields’, ‘strip’, ‘swapcase’, ‘translate’, ‘upper’, ‘uppercase’,
‘whitespace’, ‘zfill’]

Here, the special string variable ‘__name__’ holds module’s name, and ‘__file__’ holds the
filename from which the corresponding module is loaded.

Sample Code for manipulating strings

import string

txt = “Python String Module”

print “upper”, string.upper(txt)

print “lower”, string.lower(txt)

print “split”, string.split(txt)

print “join”, string.join(string.split(txt), “+”)

print “replace”, string.replace(txt, “Python”, “Java”)

print “find”, string.find(txt, “Python”)

print “find”, string.find(txt, “Java”)

print “count”, string.count(txt, “n”)

3.48 Problem Solving and Python Programming

Sample Output:
upper PYTHON STRING MODULE
lower python string module
split [‘Python’, ‘String’, ‘Module’]
join Python+String+Module
replace Java String Module
find 0
find -1
count 2

Sample Code 3 for converting strings to numbers
import string

print int(“5217”),

print string.atoi(“5217”),

print string.atoi(“12141”, 8), # octal

print string.atoi(“1461”, 16), # hexadecimal

print string.atoi(“5217”, 0),

print string.atoi(“05217”, 0),

print string.atoi(“0x5217”, 0)

print float(“5217”),

print string.atof(“1”),

print string.atof(“1.23e5”)

Sample Output:
5217 5217 5217 5217 4711
5217 2703 21015
5217.0 1.0 123000.0

atoi() function uses the second argument (optional) for identifying the number base. If the
base is zero, atoi() examines the first few characters to identify the base. If ‘0x’, the base is 16
(hexadecimal), and if ‘0’, the base is 8 (octal). The default base is 10 (decimal).

3.6 ARRAYS
Python lists can store values of different data types. But, arrays in python can only store

values of same data type. Array is not a fundamental data type in Python. So, the standard ‘array’
module has to be imported as:

from array import *

Control Flow, Functions 3.49

Then an array has to be declared as:

arrayID = array(typecode, [Initializers])

Here, ‘arrayID’ is the name of an array, ‘typecode’ is the type of array and ‘Initializers’ are
the values with which an array is initialized.

Example:

my_array = array(‘i’,[1,2,3,4])

Table 3.1 Typescodes in Python arrays

Typecode Description
‘b’ signed integer of size 1 byte
‘B’ unsigned integer of size 1 byte
‘c’ character of size 1 byte
‘u’ unicode character of size 2 bytes
‘h’ signed integer of size 2 bytes
‘H’ unsigned integer of size 2 bytes
‘i’ signed integer of size 2 bytes
‘I’ unsigned integer of size 2 bytes
‘w’ unicode character of size 4 bytes
‘l’ signed integer of size 4 bytes
‘L’ unsigned integer of size 4 bytes
‘f’ floating point of size 4 bytes
‘d’ floating point of size 8 bytes

Sample Code

from array import *

myArray = array(‘i’, [1,2,3,4,5])

for i in myArray:

 print i

Sample Output:
1
2
3
4
5

3.50 Problem Solving and Python Programming

3.6.1 Lists as Arrays
As Python does not have a native array data structure, it is required to load the numpy

python module. Both the visual module and the pylab module load numpy. But, if we use plain
python, there is no array. Since arrays look a lot like a list, lists can be employed as arrays. However,
arrays (instead of lists) should be used to perform arithmetic operations. Moreover, arrays will store
data more compactly and efficiently.

In Python, a one-dimensional array can easily be represented as a list. The following code
initializes an array ‘myArray’ and attempts to find the largest of its items, using the concept of lists
in Python.

myArray=[45, 23, 76, 12, 33]

print ‘The given elements are’

for i in range(len(myArray)):

 print myArray[i]

m=0

for i in range(len(myArray)):

 if m<myArray[i]:

 m=myArray[i]

print ‘The largest is’, m

Sample Output:
The given elements are
45
23
76
12
33
The largest is 76

A 2D array can be created using lists within list. The following code creates the 2×2 matrix
as [[1,2],[3,4]] with the list [1,2] representing the first row and the list [3,4] representing the second
row.

Sample Code

myArray=[[1,2],[3,4]]

for i in range(len(myArray)):

for j in range(len(myArray[i])):

 print myArray[i][j]

Control Flow, Functions 3.51

Sample Output:
1
2
3
4

In a similar manner, a 3×2 matrix with elements [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’] is created and
displayed along with their indices in the following code:

Sample Code

myArray=[[‘a’,’b’],[‘c’,’d’],[‘e’,’f’]]

for i in range(len(myArray)):

 for j in range(len(myArray[i])):

 print ‘[‘,i,’ ‘,j,’]’,myArray[i][j]

Sample Output:
[0 0] a
[0 1] b
[1 0] c
[1 1] d
[2 0] e
[2 1] f

3.7 ILLUSTRATIVE PROGRAMS
3.7.1 Program to compute sum of array elements from array

import * # import array module def sum_array():

my_array=array(‘i’,[]) # creating array of integers with no values

n=int(input(“Enter no. of elements in array”)

for i in range(0,n):

v=int(input(“Enter no.”)

my_array.insert(i,v) # add values in array (i-index pos;v-value)

sum=0

for i in my_array():

sum=sum+i

print(sum) sum_array()

3.52 Problem Solving and Python Programming

Sample input/output:
Enter no. of elements in array 5 Enter no. 1
Enter no. 2
Enter no. 3
Enter no. 4
Enter no. 5
15

3.7.2. Program to compute gcd, square root, and exponentiation of a given number
import math def compute():

print(math.gcd(12,18)) print(math.sqrt(100)) print(math.exp(2))

compute()

Sample input/output:
6
10.0
7.38905609893065

3.7.3 Sequential search
Sequential Search: In computer science, linear search or sequential search is a method for

finding a particular value in a list that checks each element in sequence until the desired element is
found or the list is exhausted. The list need not be ordered.

20 30 40 50 60
0 1 2 3 4

Case 1:
Search value = 50
Step 1: Compare 50 with value at index 0
Step 2: Compare 50 with value at index 1
Step 3: Compare 50 with value at index 2
Step 4: Compare 50 with value at index 3 (Success)

Case 2:

Search value = 70

Step 1: Compare 70 with value at index 0

Step 2: Compare 70 with value at index 1

Step 3: Compare 70 with value at index 2

Control Flow, Functions 3.53

Step 4: Compare 70 with value at index 3

Step 5: Compare 70 with value at index 4

Failure

Python program for sequential search
def seq_search(List,item): # define function for sequential search

 pos=0

 found=False

 while pos<len(List) and not found: # loop through the list elements

 if(int(List[pos])==item):

 found=true

 pos=pos+1

 return(found,pos)

ls=[]

n=int(input(“Enter no. of elements in the list”)

for i in range(0,n):

 v=input(“Enter no.”) # Input number

 ls.append(v)

print(ls)

key=input(“Enter key to be searched”) # Read search key

print(seq_search(ls,key)) # call function for sequential search

Sample input/output:
Enter no. of elements in the list 3
Enter no. 1
Enter no. 2
Enter no. 3
[‘1’, ‘2’, ‘3’]
Enter key to be searched 2
(True, 2)

3.7.4 Binary search
A binary search or half-interval search algorithm finds the position of a target value within a

sorted array. The binary search algorithm can be classified as divide-and-conquer search algorithm
and executes in logarithmic time. The basic operation involved in binary search is as follows.

3.54 Problem Solving and Python Programming

if (value == middle element)

value is found

else if (value < middle element)

search left half of list with the same method

else

search right half of list with the same method

Case 1: val == a[mid]

val = 11

low = 0, high = 8

mid = (0 + 8) / 2 = 4

1 2 7 9 11 13 17 23 27
0
↑

1 2 3 4
↑

5 6 7 8
↑

 low mid high

In this case, the key value we are looking for is located in middle position of the array. The
search operation can stop here and an appropriate value can be returned back.

Case 2: val > a[mid]

val = 23

low = 0, high = 8

mid = (0 + 8) / 2 = 4

new low = mid + 1 = 5

1 2 7 9 11 13 17 23 27
0
↑

1 2 3 4
↑

5
↑

6 7 8
↑

 low mid new low high

Figure 3.3. Case 2-Positon updation

In this case, the value 23 is greater than the middle. So it might be present in the right half
of the array. The right half part starts from position 5 to position 8. It is shown in Figure. 3.3 that
the new low is at position 5. With these new low and high positions, the algorithm is applied to this
right half again.

Case 3: val < a[mid]
val = 7

low = 0, high = 8

mid = (0 + 8) / 2 = 4

Control Flow, Functions 3.55

new high = mid - 1 =5

1 2 7 9 11 13 17 23 27
0
↑

1 2 3
↑

4
↑

5 6 7 8
↑

 low new high mid high

The value to be searched in this case is 7 which is less than the value at mid position. As
the array is sorted, the left half might have the search key. The left half of the array will start from
the same starting position low=0 but the high position is going to be changed to mid-1 i.e. 3. This
algorithm is executed again on this left half.

Python program for binary search.
def binary_search(item_list,item): # define function for binary search
 first = 0
 last = len(item_list)-1
 found = False
 while(first<=last and not found):
 mid = (first + last)//2 # compute middle position
 if item_list[mid] == item : # compare with middle value
 found = True
 else:
 if item < item_list[mid]: # continue search in left half
 last = mid - 1
 else:
 first = mid + 1 # continue search in right half
 return found

print(binary_search([1,2,3,5,8], 6)) # function call

print(binary_search([1,2,3,5,8], 5))

Sample input/output:
False
True

Some More Examples:
3.7.5 Find Sum of Natural Numbers Using Recursion

def rec_sum(n):

if n<=1:

 return n

3.56 Problem Solving and Python Programming

else:

 return n+rec_sum(n-1)

no=input(“Enter a no.”)

print ‘Sum:’,rec_sum(no)

Sample input/output:
Enter a no.5
Sum: 15

3.7.6 Python function that that prints out the first n rows of Pascal’s triangle.
Sample Pascal’s triangle :

1

1 1

2 11

1 3 3 1

1 4 6 4 1

Using Recursion:
def pascal(n):
 if n == 1:
 return [[1]]
 else:
 result = pascal(n-1)
 lastRow = result[-1]
 result.append([(a+b) for a,b in zip([0]+lastRow, lastRow+[0])])
 return result
def pretty(tree):
 if len(tree) == 0: return ‘’
 line = ‘ ‘ * len(tree)
 for cell in tree[0]:
 line += ‘ %2i’ % cell
 return line + “\n” + pretty(tree[1:])

print pretty(pascal(int(6))

Control Flow, Functions 3.57

Sample input/output:
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1

Using iteration:
def pascal_triangle(n):

 trow = [1]

 y = [0]

 for x in range(max(n,0)):

 print(trow)

 trow=[l+r for l,r in zip(trow+y, y+trow)]

 return n>=1

pascal_triangle(6)

Sample input/output:
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]

3.58 Problem Solving and Python Programming

TWO MARKS QUESTION & ANSWER

1. What are the types of control structures available in Python?

Python programming language provides following types of decision making statements.

Statement Description
if
statements

An if statement consists of a boolean expression followed by one or
more statements.

if...else
statements

An if statement can be followed by an optional else statement,
which executes when the boolean expression is FALSE.

nested if
statements

You can use one if or else if statement inside another if or else if
statement(s).

2. What are the looping statements available in Python?

Python programming language provides following types of loops to handle looping requirements.

Loop Type Description

while loop
Repeats a statement or group of statements while a given condition
is TRUE. It tests the condition before executing the loop body.

for loop
Executes a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

nested loops
You can use one or more loop inside any another while, for or do..
while loop.

3. What is the difference between break and continue statement?

BREAK CONTINUE
To stop the current iteration and get
out of that block

To stop the current iteration and continue
for next iteration

Break; keyword is used Continue; keyword used
It is used in switch case, for, while, do It is used in for, while
Statements after the BREAK statement
will not be executed

Statements after CONTINUE statement will
not be executed in current iteration

4. What is a global variable?

A global variable is a variable declared in the main body of the source code, outside all functions.
It will be visible throughout the program. Scope of this variable is available in all the functions.
Life as long as the program’s execution doesn’t come to an end.

Example:

This function uses global variable s
def f():
 print s

Control Flow, Functions 3.59

Global scope
s = «Example»
f()

5.. Explain in short about state diagram.

Stack diagram is a graphical representation of a stack of functions, their variables, and the
values they refer to. Each function is represented by a frame. Frame is a box in a stack diagram
that represents a function call. It contains local variables and parameters of the function.

Example:
<module>

n1->10

n2->5

sub x->10

y->5

z->5

def sub(x,y):
z=x-y
print z
n1=10
n2=5
sub(n1,n2)

6. What is fruitful function?

Fruitful functions are functions that return value. While using fruitful function, the return value
must be handled properly by assigning it to a variable or use it as part of expression.

Example:
import math
x=math.sin(90)+1
print x # Output is 1.8939966636

7. What is void function?

Void function is a function that always returns None. It represents the absence of value.

def show():

 print ‘Welcome!!!’

result=show()

print result

8. Define Recursion.

Recursion is a way of programming in which a function calls itself again and again until a
condition is true. A recursive function calls itself and has a termination condition.

Example:
def show():
 show()
 return

3.60 Problem Solving and Python Programming

9. What are the advantages and disadvantages of recursion.

Advantages of recursion

(1) Recursive functions make the code look clean and elegant.

(2) A complex task can be broken down into simpler sub-problems using recursion.

(3) Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of recursion

(1) Sometimes the logic behind recursion is hard to follow through.

(2) Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

(3) Recursive functions are hard to debug

10. Define Module. What are the ways to import modules in Python?
Module is a Python file that contains collection of related variables, functions, classes and
other definitions.
Python provides the following three different ways to import modules:
(1) Using import
(2) Importing individual objects
(3) __import__(‘’)

11. What is a string?

A string is a sequence of zero or more characters. An empty string contains no characters and
has a length 0.The indices of a string’s characters are numbered from 0 from the left end and
numbered from -1 from the right end.

What is the output of the following python code?
s=”All the best!”
print s
print s[0]
print s[2:5]
print s*2
Output:
 All the best!
 A
 l t
 All the best!All the best!

12. Define String slice.

A part of a string is called slice. The operator [m:n] returns the part of the string from mth index
to nth index, including the character at mth index but excluding the character at nth index.

Control Flow, Functions 3.61

 • If the first index is omitted, the slice starts at the beginning of the string.
 • If the second index is omitted, the slice goes to the end of the string.
 • If the first index is greater than or equals to the second, the slice is an empty string.
 • If both indices are omitted, the slice is a given string itself.

13. Why do we call Python string as immutable?

Python string is called as immutable since its characters can be accessed but the string cannot
be modified.

Eg:
s=’hello, Python!’
s[0]=’H’
TypeError: ‘str’ object does not support item assignment

14. List out any four methods of Python strings:
 • capitalize()
 • isupper()
 • islower()
 • swapcase()

15. What is the use of string module in Python?

The string module of Python is a file that offers additional functions, classes and variables to
manipulate standard strings.

16. How will you check in a string that all characters are alphanumeric?

isalnum() can be used which returns true if string has at least 1 character and all other characters
are alphanumeric.

17. What is an array? (or) Define array.

An array is a collection of same data type elements. All elements are stored in continuous
locations. Array index always start from ‘0’. It is represented using [] – square brackets

Types of Array:
(1) One dimensional array
(2) Two dimensional array
(3) Multidimensional array

18. Define List.

A list is a sequence of any type of values and can be created as a set of comma-separated values
within square brackets. The values in a list are called elements or items.

Eg:

list1 = [‘Ram’, ‘Chennai’, 2017] # list of different types of elements

