
UNIT - 1

ALGORITHMIC PROBLEM SOLVING

1.1	 ALGORITHM
An algorithm is defined as a step by step procedure for solving a problem. It is a ordered set

of rules to solve a problem. An algorithm is a representation of a solution to a problem. It is a well-
defined computational procedure consisting of a set of instructions that takes some value or set of
values, as input, and produces some value or set of values, as output.

Algorithm
A step by step method
for solving a problem

OutputInput

1.1.1	 Properties of Algorithms
Every algorithm must have five essential properties:

(1)	 Inputs specified: An algorithm must have zero or more inputs, We must specify the type
of the data, the amount of data, and the form that the data will take.

(2)	 Outputs specified: An algorithm has one or more outputs, which have a specified
relation to the inputs.

(3)	 Definiteness: Every detail of each step must be clearly specified.

(4)	 Effectiveness: All operations to be performed must be sufficiently basic that they can be
done exactly and in finite length.

(5)	 Finiteness: An algorithm must always terminate after a finite number of steps.

1.1.2	 Characteristics of Algorithm Finiteness
Algorithm must terminate after a finite number of steps and further each steps must be

executable in finite amount of time.

Definiteness
Instruction must be clear, user defined & Precise. There should not be any ambiguity.

Input
An algorithm has zero or more, but only finite number of inputs, zero inputs. Eg: ASCII

character of 0-225.

1.2 Problem Solving and Python Programming

Output
An algorithm has one or more output.

Effectiveness
An algorithm should be effective that means each of the operation to be preformed in

algorithm should be computer programming language independent.

Uniqueness
Result or each steps are uniquely defined and only depend on the input and result of the

preceding steps.

Generality
Algorithm should apply to set of input, rather than single input.

Feasibility
It must be possible to perform each instructions.

1.1.3	 Method for Developing an Algorithm

(1)	 Define the problem: State the problem to be solved in clear and concise manner.

(2)	 List the inputs and outputs

(3)	 Describe the steps needed to convert input to output

(4)	 Test the algorithm: Choose input data and verify that the algorithm works.

1.2	 BUILDING BLOCKS OF ALGORITHM
1.2.1	 Statements/Instructions

The statements/instructions enable us to manipulate the data items. The instructions in
Python or indeed in any high-level language are designed as components for algorithmic problem
solving rather than as one-to-one translations of the underlying machine language instruction set of
the computer. Thus, they allow the programmer to work at a higher level of abstraction.

Input/output statements make up one type of statement. An input statement collects a
specific value from the user for a variable within the program. An output statement writes a message
or the value of a program variable to the user’s screen. Assignment statement, which assigns a
value to a program variable. This is similar to what an input statement does, except that the value
is not collected directly from the user, but is computed by the program. Control statements, the
third type of statement, affect the order in which instructions are executed. A program executes
one instruction or program statement at a time. Without directions to the contrary, instructions are
executed sequentially from first to last in the program. Control statements direct the flow of control.

1.2.2	 State
Stored data are regarded as part of the internal state of the entity performing the algorithm.

The state is stored in one or more data structures. For such computational process, the algorithm must

Algorithmic Problem Solving 1.3

be rigorously defined and it must be specified in the way that it applies in all possible circumstances.
Data Structure specify the arrangement of data in a particular format.

1.2.3	 Control Flow
Control flow (or flow of control) is the order in which individual statements, instructions or

function calls of a program are executed or evaluated. At the level of machine language or assembly
language, control flow instructions usually work by altering the program counter. For some central
processing units (CPUs), control flow instructions available are conditional or unconditional branch
instructions, also termed jumps.

kinds of control flow statements
•• conditional branch

•• loop - the same as conditional branch

•• subroutines, co-routines, and continuations

•• unconditional halt

1.2.4	 Function
A function is a sequence of instructions that perform a task, bundled as a unit. Functions

can accept input arguments and produce output values. A function in Python is defined by using the
keyword def, after which the name of the function follows, terminated by a pair of braces (which
may or may not contain input parameters) and, finally, a colon (:) signals the end of the function
definition line. Immediately afterwards, indented by four spaces, we find the body of the function,
which is the set of instructions that the function will execute when called.

Reason for using Function
•• Hide the implementation details from their users.

•• Reduce code duplication in a program.

•• Help in splitting a complex task into smaller blocks, each of which becomes a function.

•• Improve traceability.

•• Improve readability.

1.2.5	 Basic building blocks of Algorithm
Three basic building blocks of algorithm are Sequence, Selection, and Iteration.

Building Block Common name Description
Sequence Action Instructions are executed in sequential order (from

first to last).
Selection Decision or

Branching
A Decision is making a choice among several
actions (condition checking).

Iteration Repetition or Loop A Loop is one or more instructions that the
computer performs repeatedly.

1.4 Problem Solving and Python Programming

Sequence Structure

This is the most common form of control structure. Each statement in the program is
executed one after another in the given order. The flow of sequence structure is shown in Figure.1.1.

Statement 1

Statement 2

Statement n

Figure 1.1. Sequence structure.

An algorithm to add two numbers entered by user
Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2

Step 5: Display sum

Step 6: Stop

Selection Structure
The selection control structure is the presentation of a condition and the choice between two

(or sometimes more) actions. The choice made depends on whether the condition is true or false. It is
also called a decision, one of the three basic logic structures in computer. This structure is sometimes
referred to as an if-then-else because it directs the program to perform in this way: If Condition A
is True then perform Action X else perform Action Y. The flow of sequence structure is shown in
Figure.1.2.

True False

Figure 1.2. Selection structure.

Algorithmic Problem Solving 1.5

Algorithm to find the largest among three different numbers entered by user.
Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4: If a>b

If a>c
Display a is the largest number.
Else
Display c is the largest number.
Else
If b>c
Display b is the largest number.
Else
Display c is the greatest number.

Step 5: Stop

Algorithm to find all roots of a quadratic equation ax2+bx+c=0.
Step 1: Start
Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;
Step 3: Calculate discriminant

D←b2-4ac
Step 4: If D≥0

r1←(-b+√D)/2a
r2←(-b-√D)/2a
Display r1 and r2 as roots.
Else
Calculate real part and imaginary part
rp←b/2a
ip←√(-D)/2a
Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

Iteration Structure
The iterative process is also called as repetition or looping. It carries out a particular action

over and over again until some condition is met. A loop is created to return the program to where
the repetition has started for as long as it takes until the condition is met.

1.6 Problem Solving and Python Programming

There are two ways of testing to see if the condition is met: pre-test loops, and post-test
loops. In pre-test loops, the condition is tested at the beginning of the loop. If the condition fails,
the looping process will never carried out. Here the loop is operated only when condition is met.
Pre-test loop ends when the condition fails.

Post-test loops test the condition at the end of the loop. The looping process is executed
first whether the condition is true or false and will keep repeating until the condition is met. This
loop ends when the condition is true. The structures of pre-tested and post-tested loops are shown
in Figure.1.3.

True False

True

False

Figure 1.3. Iteration structure.

Algorithm to find the factorial of a number entered by user
Step 1: Start

Step 2: Declare variables n,factorial and i.

Step 3: Initialize variables

factorial←1

i←1

Step 4: Read value of n

Step 5: Repeat the steps until i=n

5.1: factorial←factorial*i

5.2: i←i+1

Step 6: Display factorial

Step 7: Stop

An algorithm to find the Fibonacci series till term≤1000
Step 1: Start

Step 2: Declare variables first_term,second_term and temp.

Step 3: Initialize variables first_term←0 second_term←1

Step 4: Display first_term and second_term

Algorithmic Problem Solving 1.7

Step 5: Repeat the steps until second_term≤1000

5.1: temp←second_term

5.2: second_term←second_term+first term

5.3: first_term←temp

5.4: Display second_term

Step 6: Stop

1.3	 ALGORITHM NOTATIONS (EXPRESSING ALGORITHMS)
An algorithm is a sequence of finite instructions, often used for calculation and data

processing. Algorithms can be expressed in many kinds of notation, including

Fig 1.3.1 Notations

1.3.1	 PSEUDOCODE
Pseudocode (pronounced SOO-doh-kohd) is a kind of structured English for representing

algorithms and is a “text-based” detail design tool for human understanding rather than machine
understanding. It allows the designer to concentrate on the logic of the algorithm without worrying
about the details of language syntax.

Once the pseudo code is prepared, it is rewritten using the syntax and semantic rules of a
programming language.

Rules of Pseudo code

•• Start with an algorithm and phrase it using words that are easily transcribed into
computer instructions.

•• Indent when you are enclosing instructions within a loop or a conditional clause.

•• Avoid words associated with a certain kind of computer language.

•• Do not include data declarations in pseudo code.

1.8 Problem Solving and Python Programming

Three basic constructs for flow of control
1. Sequence

◦◦ Default mode.

◦◦ Used for the sequential execution of statements, one line after another.

2. Selection

◦◦ Used for decisions to choose between two or more alternative paths.

3. Repetition

◦◦ Used for looping to repeat a piece of code several times.

Sequence

It is indicated by writing one statement after another, each statement on a line by itself, and
all statements aligned with the same indent. The actions are performed in the order in which they
are written, from top to bottom.

Common Keywords

Input: READ, INPUT, OBTAIN, GET

Output: PRINT, OUTPUT, DISPLAY, SHOW

Compute: COMPUTE, CALCULATE, DETERMINE

Initialize: SET, INIT

Add one: INCREMENT, BUMP

Examples

(i)	 Pseudo code for computing the area of a rectangle.

READ height of rectangle

READ width of rectangle

COMPUTE area as height times width

PRINT area

(ii)	Pseudo code for computing the average of five numbers.

PRINT “Enter 5 numbers”

READ n1, n2, n3, n4, n5

PRINT “The average is”

SET avg to (n1+n2+n3+n4+n5)/5

PRINT avg

Algorithmic Problem Solving 1.9

Selection

It is a decision (selection) in which a choice is made between two alternative courses of
action and it comprises of the following constructs:

•• IF-THEN-ELSE

•• CASE...ENDCASE

IF-THEN-ELSE

Binary choice on a given Boolean condition is indicated by the use of four keywords:

◦◦ IF, THEN, ELSE, and ENDIF.

The general form is:

IF condition THEN

	 sequence 1

ELSE

	 sequence 2

ENDIF

The ELSE keyword and “sequence 2” are optional. If the condition is true, sequence 1 is
performed, otherwise sequence 2 is performed.

Examples

(i) Pseudo code to check whether the number is odd or even.

READ number
IF number MOD 2 = 0 THEN
	 DISPLAY “Number is Even”
ELSE
	 DISPLAY “Number is Odd”
ENDIF

(ii) Pseudo code to check whether the given non-zero number is positive or negative.
READ number
IF num is less than 0 THEN
PRINT num is negative
ELSE
PRINT num is positive
ENDIF

1.10 Problem Solving and Python Programming

CASE
CASE is a multiway branch (decision) based on the value of an expression. CASE is a

generalization of IF-THEN-ELSE. Four keywords, CASE, OF, OTHERS, and ENDCASE, and
conditions are used to indicate the various alternatives.

The general form is:

CASE expression OF

condition 1 : sequence 1

condition 2 : sequence 2

...

condition n : sequence n

OTHERS:

default sequence

ENDCASE

The OTHERS clause with its default sequence is optional. Conditions are normally numbers
or characters indicating the value of “expression”, but they can be English statements or some other
notation that specifies the condition under which the given sequence is to be performed. A certain
sequence may be associated with more than one condition.

Examples

(i) Pseudo code for simple calculator

READ n1, n2

READ choice

CASE choice OF

+ : PRINT n1+n2

– : PRINT n1-n2

* : PRINT n1*n2

/ : PRINT n1/n2

ENDCASE

(ii) Pseudo code for determining gradepoints from grades.

READ grade

CASE grade OF

S : gradepoint = 10

A : gradepoint = 9

Algorithmic Problem Solving 1.11

B : gradepoint = 8

C : gradepoint = 7

D : gradepoint = 6

E : gradepoint = 5

U : gradepoint = 0

ENDCASE

DISPLAY gradepoint

Repetition
It is a loop (iteration) based on the satisfaction of some condition(s). It comprises of the

following constructs:

•• WHILE...ENDWHILE

•• REPEAT...UNTIL

•• FOR...ENDFOR

WHILE...ENDWHILE
It is a loop (repetition) with a simple condition at its beginning. The beginning and ending

of the loop are indicated by two keywords WHILE and ENDWHILE.

The general form is:

WHILE condition

	 sequence

ENDWHILE

The loop is entered only if the condition is true. The “sequence” is performed for each
iteration. At the conclusion of each iteration, the condition is evaluated and the loop continues as
long as the condition is true.

Examples

(i) Pseudo code to print the numbers from 1 to 100.

n=1

WHILE n is less than or equal to 100

	 DISPLAY n

	 INCREMENT n by 1

ENDWHILE

1.12 Problem Solving and Python Programming

(ii) Pseudo code to print the sum of the digits of a given number

INPUT a Number

INITIALIZE Sum to zero

WHILE Number is not zero

	 COMPUTE Remainder by Number Mod 10

	 ADD Remainder to Sum

	 DIVIDE Number by 10

ENDWHILE

PRINT Sum

REPEAT...UNTIL
It is a loop with a simple condition at the bottom. This loop is similar to the WHILE loop

except that the test is performed at the bottom of the loop instead of at the top. Two keywords,
REPEAT and UNTIL are used.

The general form is:

REPEAT

	 sequence

UNTIL condition

The “sequence” in this type of loop is always performed at least once, because the test
is peformed after the sequence is executed. At the conclusion of each iteration, the condition is
evaluated, and the loop repeats if the condition is false. The loop terminates when the condition
becomes true.

Examples

(i) Pseudo code to print the numbers from 1 to 100.

n=1

REPEAT

	 DISPLAY n

	 INCREMENT n by 1

UNTIL n is greater than 100

(ii) Pseudo code to print the sum of the digits of a given number

INPUT a Number

INITIALIZE Sum to zero

Algorithmic Problem Solving 1.13

REPEAT

	 COMPUTE Remainder by Number Mod 10

	 ADD Remainder to Sum

	 DIVIDE Number by 10

UNTIL Number is zero

PRINT Sum

FOR...ENDFOR
FOR is a “counting” loop. This loop is a specialized construct for iterating a specific number

of times, often called a “counting” loop. Two keywords, FOR and ENDFOR are used.

The general form is:

FOR iteration bounds

	 sequence

ENDFOR

Examples

(i) Pseudo code to print the numbers from 1 to 100.

FOR n=1 to 100

	 DISPLAY n

ENDFOR

(ii) Pseudo code to input ten numbers and print the sum.

INITIALIZE sum to 0

FOR n=1 to 10

	 INPUT number

	 COMPUTE sum as sum+number

ENDFOR

DISPLAY sum

Nested Constructs
The constructs can be embedded within each other, and this is made clear by use of indenting.

Nested constructs should be clearly indented from their surrounding constructs.

Examples

(i) Pseudo code to find the smallest among three numbers using nested IF construct.

READ the three numbers a, b, c.

1.14 Problem Solving and Python Programming

IF a is less than b THEN
	 IF a is less than c THEN
		 PRINT a,
	 ELSE
		 PRINT c
	 ENDIF
ELSE IF b is less than a THEN
	 IF b is less than c THEN
		 PRINT b
	 ELSE
		 PRINT c
	 ENDIF
ENDIF

(ii)	 Pseudo construct using IF construct nested within REPEAT construct.

SET total to zero

REPEAT

READ Temperature

IF Temperature > Freezing THEN

 INCREMENT total

ENDIF

UNTIL Temperature < zero

PRINT total

Invoking Subprocedures

To call subprocedures (functions), CALL keyword is used with the following structure:

CALL subprocedurename [WITH argumentslist] [RETURNING returnvalue]

Here, “WITH argumentslist” and “RETURNING returnvalue” are optional. “WITH
argumentslist” is used to call a function with arguments. “RETURNING returnvalue” is used when
a called function returns a value.

Examples:

CALL SumAndAvg WITH NumberList

◦◦ Calls a function SumAndAvg with NumberList as an argument. This function does
not return any value.

Algorithmic Problem Solving 1.15

CALL SwapItems WITH CurrentItem and TargetItem

◦◦ Calls a function SwapItems with CurrentItem and TargetItem as arguments. This
function does not return any value.

CALL getBalance RETURNING BalanceAmt

◦◦ Calls a function getBalance which returns BalanceAmt as its return value. This
function does not take any argument.

Advantages of Pseudo code

(1)	 Can be read and understood easily.

(2)	 Can be done easily on a word processor.

(3)	 Can be modified easily.

(4)	 Implements structured concepts well.

(5)	 Clarifies algorithms in many cases.

(6)	 Imposes increased discipline on the process of documenting detailed design.

(7)	 Provides additional level at which inspection can be performed.

(8)	 Helps to trap defects before they become code.

(9)	 Increases product reliability.

(10)	Converting a pseudocode to a program is simple.

Disadvantages of Pseudo code

(1)	 Creates an additional level of documentation to maintain.

(2)	 Introduces error possibilities in translating to code.

(3)	 May require tool to extract pseudocode and facilitate drawing flowcharts.

(4)	 There is no standardized format, so one pseudocode may be different from another.

(5)	 For a beginner, it is more difficult to follow the logic and write pseudocode as compared
to flowchart.

(6)	 We do not get a picture of the design.

1.3.2	 Flowchart
Flowchart is a diagrammatic representation of an algorithm or a stepwise process, showing

the steps as boxes of various kinds, and their order by connecting these with arrows. Flowcharts
are used in designing or documenting a process or program. In other words, a flow chart, or flow
diagram, is a graphical representation of a process or system that details the sequencing of steps
required to create output. A flowchart is a picture of the separate steps of a process in sequential
order.

1.16 Problem Solving and Python Programming

Flowchart is very helpful in writing program and explaining program to others. Flowchart
makes us to understand the problem unambiguously. It is often used by programmer as a program
planning tool for organizing a sequence of step necessary to solve a problem by a computer.

Symbol Purpose Description

Terminal(Stop/Start) Represents start and end of flowchart.

Input/output Represents input and output operation.

Processing Represents arithmetic operations and
data-manipulations.

Decision
Represents the decision making
operation in which there are two
alternatives, true and false.

On-page Connector Used to join different flow line

Off-page Connector Used to connect flowchart portion on
different page.

Predefined Process/
Function

Represent a group of statements
performing one processing task and for
function call.

Looping statements Used for iterative statements(Looping
structure).

Declare Used for declaration statements

Flow line Indicates the flow of logic by connecting
symbols.

GUIDELINES
The following are some guidelines in flowcharting:

(a)	 In drawing a proper flowchart, all necessary requirements should be listed out in logical
order.

(b)	 The flowchart should be clear, neat and easy to follow. There should not be any room for
ambiguity in understanding the flowchart.

Algorithmic Problem Solving 1.17

(c)	 The usual direction of the flow of a procedure or system is from left to right or top to
bottom.

(d)	 Only one flow line should come out from a process symbol.

or

(e)	 Only one flow line should enter a decision symbol, but two or three flow lines, one for
each possible answer, should leave the decision symbol.

> 0< 0

= 0

> 0< 0

= 0

(f)	 Only one flow line is used in conjunction with terminal symbol.

(g)	 Write within standard symbols briefly. As necessary, you can use the annotation symbol
to describe data or computational steps more clearly.

This is top secret data

(h)	 If the flowchart becomes complex, it is better to use connector symbols to reduce the
number of flow lines. Avoid the intersection of flow lines if you want to make it more
effective and better way of communication.

(i)	 Ensure that the flowchart has a logical start and finish.

(j)	 It is useful to test the validity of the flowchart by passing through it with a simple test
data.

Advantages of flow charts

•• It is easy to understand

•• A problem can be analysed easily with flowchart

•• It gives clear idea of a program

•• It acts as a guide during the program development

•• It helps to clear the errors in coding

•• It helps in maintenance of code

1.18 Problem Solving and Python Programming

Disadvantages of flow charts

•• It cannot be prepared for difficult programs

•• Alterations and modifications cannot be done easily

•• It is not typed, so its preparation is little difficult

Rules for drawing a flow chart is given below

•• The standard symbols should only be used.

•• The arrowheads in the flowchart represent the direction of flow of control in the problem.

•• The usual direction of the flow of procedure is from top to bottom or left to right.

•• The flow lines should not cross each other.

•• Be consistent in using names and variables in the flowchart.

•• Keep the flowchart as simple as possible.

•• Words in the flowchart symbols should be common statements and easy to understand.

•• Chart main line of logic, and then incorporate all the details of logic.

•• If a new page is needed for flowcharting, then use connectors for better representation.

•• Don’t chart every details or the flowchart will only be graphical represented

Flowchart representation to add two numbers

Start

Declare variables num1, num2 and sum

Read num1and num2

sum ← a+b

Display sum

stop

Algorithmic Problem Solving 1.19

Flowchart representation to find all the roots of a quadratic equation ax2+bx+c=0
Start

Declare variables a, b, c, d, x1, x2, rp and ip

Calculate discriminant
D←b-4ac

FalseTrue

r1←(-b+ 𝐷)/2𝑎
r2←(-b+ 𝐷)/2𝑎

ip←-b+/2𝑎
rp← 𝐷)/2𝑎

x1←rp+j ip
x1← rp-j ip

Display r1 and r2

Stop

is
D ≥ 0?

Flowchart representation to find the Fibonacci series till term≤1000
Start

Declare variables fterm, sterm and temp

fterm←0, sterm←1

False

True

Stop

is
sterm ≤ 1000?

Display sterm

temp←sterm

sterm←sterm+fterm

fterm←temp

1.20 Problem Solving and Python Programming

1.3.3	 Programming Language
Representation of Algorithm using Programming Language

Algorithms describe the solution to a problem in terms of the data needed to represent
the problem instance and the set of steps necessary to produce the intended result. Programming
languages must provide a notational way to represent both the process and the data. It also provide
control constructs and data types.

Programming is the process of taking an algorithm and encoding it into a notation, a
programming language, so that it can be executed by a computer. Although many programming
languages and many different types of computers exist, the important first step is the need to have
the solution. Without an algorithm there can be no program. Control constructs allow algorithmic
steps to be represented in a convenient yet unambiguous way. At a minimum, algorithms require
constructs that perform sequential processing, selection for decision-making, and iteration for
repetitive control. As long as the language provides these basic statements, it can be used for
algorithm representation.

Programming is implementing the already solved problem (algorithm) in a specific computer
language where syntax and other relevant parameters are different, based on different programming
languages.

Fig Programming

Low level Language(Machine level Language)

A low-level language is a programming language that deals with a computer's hardware
components and constraints. In simple we can say that ,low level language can only be understand
by computer processor and components. Binary and assembly languages are examples for low level
language.

Middle level Language (Intermediate Language)

Medium-level language serves as the bridge between the raw hardware and programming
layer of a computer system.Medium-level language is also known as intermediate programming
language and pseudo language. C intermediate language and Java byte code are some examples of
medium-level language.

Algorithmic Problem Solving 1.21

High level Language (Human understandable Language)
A high-level language is any programming language that enables development of a program

in a much more user-friendly programming context.High-level languages are designed to be used by
the human operator or the programmer.They are referred to as "closer to humans." In other words,
their programming style and context is easier to learn and implement than low- level languages.
BASIC, C/C++ and Java are popular examples of high-level languages.

Fig 1.3.8 Programming

1.4	 ALGORITHMIC PROBLEM SOLVING
1.4.1	 Definition

“Algorithmic-problem solving”; this means solving problems that require the formulation
of an algorithm for their solution. The formulation of algorithms has always been an important
element of problem-solving .

1.4.2	 An algorithmic Development Process
Every problem solution starts with a plan. That plan is called an algorithm.An algorithm is

a plan for solving a problem.

Different ways in which algorithm solves Problem
•• A computer is a tool that can be used to implement a plan for solving a problem.

•• A computer program is a set of instructions for a computer. These instructions describe
the steps that the computer must follow to implement a plan.

•• An algorithm is a plan for solving a problem. A person must design an algorithm.

•• A person must translate an algorithm into a computer program.

1.4.3	 Fundamentals of Algorithmic Problem Solving
•• Understanding the problem : An input to an algorithm specifies an instance of the

problem the algorithm solves. It’s also important to specify exactly the range of instances
the algorithm needs to handle. Before this we have to clearly understand the problem

1.22 Problem Solving and Python Programming

and clarify the doubts after leading the problems description. Correct algorithm should
work for all possible inputs.

•• Ascertaining the capabilities of a computational Device: The second step is to
ascertain the capabilities of a machine. The essence of von-Neumann machines
architecture is captured by RAM, Here the instructions are executed one after another,
one operation at a time, Algorithms designed to be executed on such machines are called
sequential algorithms. An algorithm which has the capability of executing the operations
concurrently is called parallel algorithms. RAM model doesn’t support this.

•• Choosing between exact and approximate problem solving: The next decision is
to choose between solving the problem exactly or solving it approximately. Based on
this, the algorithms are classified as exact and approximation algorithms. There are
three issues to choose an approximation algorithm. First, there are certain problems like
extracting square roots, solving non-linear equations which cannot be solved exactly.
Secondly, if the problem is complicated it slows the operations. E.g. traveling salesman
problem. Third, this algorithm can be a part of a more sophisticated algorithm that
solves a problem exactly.

•• Deciding on data structures: Data structures play a vital role in designing and analysing
the algorithms. Some of the algorithm design techniques also depend on the structuring
data specifying a problem’s instance. Algorithm + Data structure = Programs

•• Algorithm Design Techniques: An algorithm design technique is a general approach
to solving problems algorithmically that is applicable to a variety of problems from
different areas of computing. Learning these techniques are important for two reasons,
First, they provide guidance for designing for new problems. Second, algorithms are
the cornerstones of computer science. Algorithm design techniques make it possible to
classify algorithms according to an underlying design idea; therefore, they can serve as
a natural way to both categorize and study algorithms.

•• Methods of specifying an Algorithm: A Pseudocode , which is a mixture of a natural
language and programming language like constructs. Its usage is similar to algorithm
descriptions for writing psuedocode there are some dialects which omits declarations of
variables, use indentation to show the scope of the statements such as if, for and while.
Use → for assignment operations, (//) two slashes for comments. To specify algorithm
flowchart is used which is a method of expressing an algorithm by a collection of
connected geometric shapes consisting descriptions of the algorithm’s steps.

•• Proving an Algorithm’s correctness: Correctness has to be proved for every algorithm.
To prove that the algorithm gives the required result for every legitimate input in a finite
amount of time. For some algorithms, a proof of correctness is quite easy; for others
it can be quite complex. A technique used for proving correctness s by mathematical
induction because an algorithm’s iterations provide a natural sequence of steps needed
for such proofs. But we need one instance of its input for which the algorithm fails.
If it is incorrect, redesign the algorithm, with the same decisions of data structures

Algorithmic Problem Solving 1.23

design technique etc. The notion of correctness for approximation algorithms is less
straightforward than it is for exact algorithm. For example, in gcd (m,n) two observations
are made. One is the second number gets smaller on every iteration and the algorithm
stops when the second number becomes 0.

•• Analysing an algorithm: There are two kinds of algorithm efficiency: time and space
efficiency. Time efficiency indicates how fast the algorithm runs; space efficiency
indicates how much extra memory the algorithm needs. Another desirable characteristic
is simplicity. Simper algorithms are easier to understand and program, the resulting
programs will be easier to debug. For e.g. Euclid’s algorithm to fid gcd (m,n) is simple
than the algorithm which uses the prime factorization. Another desirable characteristic
is generality. Two issues here are generality of the problem the algorithm solves and
the range of inputs it accepts. The designing of algorithm in general terms is sometimes
easier. For eg, the general problem of computing the gcd of two integers and to solve
the problem. But at times designing a general algorithm is unnecessary or difficult or
even impossible. For eg, it is unnecessary to sort a list of n numbers to find its median,
which is its [n/2]th smallest element. As to the range of inputs, we should aim at a range
of inputs that is natural for the problem at hand.

•• Coding an algorithm: Programming the algorithm by using some programming
language. Formal verification is done for small programs. Validity is done thru testing
and debugging. Inputs should fall within a range and hence require no verification. Some
compilers allow code optimization which can speed up a program by a constant factor
whereas a better algorithm can make a difference in their running time. The analysis
has to be done in various sets of inputs. A good algorithm is a result of repeated effort
& work. The program’s stopping / terminating condition has to be set. The optimality
is an interesting issue which relies on the complexity of the problem to be solved.
Another important issue is the question of whether or not every problem can be solved
by an algorithm. And the last, is to avoid the ambiguity which arises for a complicated
algorithm.

1.5	 SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS
Step 1: Obtain a description of the problem.

Step 2: Analyze the problem.

Step 3: Develop a high-level algorithm.

Step 4: Refine the algorithm by adding more detail.

Step 5: Review the algorithm.

Step 1: Obtain a description of the problem.

This step is much more difficult than it appears. In the following discussion, the word client
refers to someone who wants to find a solution to a problem, The word developer refers to someone

1.24 Problem Solving and Python Programming

who finds a way to solve the problem. The developer must create an algorithm that will solve the
client's problem.

Step 2: Analyze the problem.

The purpose of this step is to determine both the starting and ending points for solving the
problem. This process is analogous to a mathematician determining what is given and what must be
proven. A good problem description makes it easier to perform this step.

Step 3: Develop a high-level algorithm.

An algorithm is a plan for solving a problem, but plans come in several levels of detail.
It's usually better to start with a high-level algorithm that includes the major part of a solution, but
leaves the details until later. We can use an everyday example to demonstrate a high-level algorithm.

Problem: I need to send a birthday card to my brother, Mark.

Analysis: I don't have a card. I prefer to buy a card rather than make one myself.

Example: Go to a store that sells greeting cards Select a card Purchase a card & mail the
card.

Step 4: Refine the algorithm by adding more detail.

A high-level algorithm shows the major steps that need to be followed to solve a problem.
The technique of gradually working from a high-level to a detailed algorithm is often called stepwise
refinement. Stepwise refinement is a process for developing a detailed algorithm by gradually adding
detail to a high-level algorithm.

Step 	 5: Review the algorithm.

The final step is to review the algorithm. First, we need to work through the algorithm step
by step to determine whether or not it will solve the original problem.

1.6	 ILLUSTRATIVE PROBLEMS
1.6.1	 Find minimum in a list

Algorithm:

1. Start

2. Get positive numbers from user and add it in to the List L

3. Set min to L[0].

4. For each number x in the list L, compare it to min. If x is smaller, set min to x.

5. min is now set to the minimum number in the list.

6. Stop

Algorithmic Problem Solving 1.25

Flow chart for finding minimum number in a list.

Start

Read the list
numbers, i and min

min= numbers[0]

For i in numbers

if i<min

print ‘The minimum
value in the list is min’

min= i

Stop

Yes

No

False

True

Pseudo code to find minimum in a list

READ the list of numbers

INITIALIZE min with the first element of the list

FOR each element in the list of numbers

	 IF element is less than min

		 COPY element to min

	 ENDIF
ENDFOR
PRINT min as the minimum value

1.6.2	 Pseudo code to insert a card in a list of sorted cards

Playing cards is one of the techniques of sorting and the steps are shown as follows:

•• Start with an empty left hand and cards face down on the table.

•• Then remove one card at a time from the table and Insert it into the correct position in
the left hand.

•• To find a correct position for a card, we compare it with each of the cards already in the
hand from left to right.

1.26 Problem Solving and Python Programming

Once the position is found, the cards from that position are moved to the next higher indexed
position and in that order.

New card is inserted at the current position.

Algorithm

1. Start

2. Ask for value to insert

3. Find the correct position to insert, If position cannot be found ,then insert at the end.

4. Move each element from the backup to one position, until you get position to insert.

5. Insert a value into the required position

6. Increase array counter

7. Stop

Pseudo Code

READ the list of sorted cards

READ newcard

SET pos to 0

WHILE (pos < numberOfCards) and (CARDS [pos] <= newcard)

 INCREMENT pos

ENDWHILE

IF pos < numberOfCards then

	 INCREMENT numberOfCards by 1

 FOR counter = last position used to pos by -1

 SET CARDS [counter + 1] to array CARDS [counter]

 ENDFOR

ENDIF

SET CARDS [pos] to newcard

Algorithmic Problem Solving 1.27

Flowchart for inserting a card in a list of sorted cards

location = position

location= location-1

No

Yes

Yes

No

Start

position=1

position=position+1

position<length

Stop

location > 0
&& cards [location] <

cards [location-1]

Swap cards [location] < cards[location-1]

1.6.3	 Guessing Game
Problem: Guessing Game – guessing a number within a range of numbers.

Algorithm:
Step 1. Generate a random number in between 1 and 100.

Step 2. Prompt the user for a guess number.

Step 3. Determine if the guessing number is

Step 3. (a). Equal to the random number: If it is, output a message that says the guessing is
correct and go to step 4.

Step 3.	 (b). Less than the random number: If it is,

(i)	 Output a message “Too low,”

(ii)	Ask if the user wants to continue the game. If yes, ask for another guess
number; otherwise go to step 4.

Step 3. (c). Greater than the random number: If it is,

(i)	 Output a message “Too high,”

(ii)	Ask if the user wants to continue the game. If yes, ask for another guess
number; otherwise go to step 4.

Step 4. Stop.

1.28 Problem Solving and Python Programming

Pseudo code to guess an integer number in a range
This task allows a player to guess a number that lies between 1 and 100. The code should

keep repeating until the player guesses the correct number. The number guessed by the system in
the following pseudo code is 45.
Pseudo Code

READ number from player
WHILE number is not equal to 45
	 IF number is less than 45 THEN
		 PRINT Your guess is too small.
	 ELSE IN number is greater than 45
		 PRINT Your guess is too high.
	 ENDIF
	 IF number does not fall between 1 and 100 THEN
		 PRINT Guess a number between 1 and 100
	 ENDIF
	 READ number
ENDWHILE
PRINT Your guess is correct

Flowchart:
 Start

num=input random number

guess=input user guess

Does
guess=num

Print “Well done that’s’ right”

Do you
want to

play again?

Is
guess>num?

Print “Too high”

Yes

Yes

No

No

Print “Too low”

Do you give
up?

End

Yes

No
No

Yes

Algorithmic Problem Solving 1.29

1.6.4	 Towers of Hanoi
Problem:

Tower of Hanoi is a mathematical puzzle with three rods and ‘n’ numbers of discs. These
rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over
the larger one. The objective is to move all the disks to some another tower without violating the
sequence of arrangement.

Rules to be followed:

•• Only one disk can be moved among the towers at any given time.

•• Only the “top” disk can be removed.

•• No large disk can sit over a small disk.

2 DISKS

A B C

A B C A B C A B C

(1) (2) (3)

Recursive Algorithm of Towers of Hanoi:
Main program

#fr-source rod; ar-auxillary rod; tr-target rod

Step 1: Start

Step 2: Define function

Step 3: Declare variable n

Step 4: Enter the number of disc n

Step 5: Initialize the fr=a, ar=c, tr = b

Step 4: Call the function towerfun (n, a , c, b)

Step 5: Stop

Algorithm for Function Definition

Step 1: if n=1

Step 1.a: Print Move disc 1 from fr to tr

Step 2: Call the function with n-1, fr, ar, tr

1.30 Problem Solving and Python Programming

Step 3: Move disc n from fr to tr

Step 4: Call function with n-1, ar, tr, fr

Step 5: Return

Pseudo code for Towers of Hanoi

SUBPROCEDURE Hanoi(disk, source, destination, auxiliary)

	 IF disk == 0, THEN

	 move disk from source to destination

	 ELSE

	 MoveTower(disk - 1, source, auxiliary, destination)

	 Move disk from source to destination

	 MoveTower(disk - 1, auxiliary, destination, source)

	 ENDIF

END PROCEDURE

The above subprocedure “Hanoi” can be called by the following statement:

	 CALL Hanoi WITH 5, A, B, C

Flowchart: Main program

Start

Declare n

Enter the number of Discs

End

Define function tower fun

Call the function towerfun
with n, A, C, B

M

Algorithmic Problem Solving 1.31

Flowchart: Function towerfun()

M

n=1
?

Print Move disc 1 from fr to tr

Call the function towerfun
with n-1, fr, ar, tr

Print Move disc n from fr to tr

Call the function towerfun
with n-1, ar, tr, fr

Return

Additional algorithms and programs
Algorithm to check whether a number entered by user is prime or not.

Step 1: Start
Step 2: Declare variables n,i,flag
Step 3: Initialize variables
	 flag←1
	 i←2
Step 4: Read n from user
Step 5: Repeat the steps until i<(n/2)
	 5.1 If remainder of n÷i equals 0
	 flag←0
	 Go to step 6
	 5.2 i←i+1

Step 6: If flag=0
	 Display n is not prime
	 else
	 Display n is prime
Step 7: Stop

1.32 Problem Solving and Python Programming

Algorithm to find minimum and maximum elements in the list.
Problem: Given a list of positive numbers, return the largest number on the list.

Inputs: A list L of positive numbers.

Outputs: A number n, which will be the largest number of the list.

Algorithm:

Step 1: Set max to 0 and min to 0.

Step 2: For each number x in the list L, compare it to max.

	 Step 2.a: If x is larger, set max to x. Else set min to x

Step 3: Display max and min

Step 4: Stop

Algorithm to print numbers from 1 to 20.
Algorithm:

Step 1: Initialize X as 0,

Step 2: Increment X by 1,

Step 3: Print X,

Step 4: If X is less than 20 then go back to step 2. Else go to step 5.

Step 5: Stop

Algorithm to convert Temperature from Fahrenheit to Celsius
Algorithm:

Step 1: Read temperature in Fahrenheit,

Step 2: Calculate temperature with formula C=5/9*(F-32),

Step 3: Print C

Step 4: Stop

Algorithm to determine and output whether number N is Even or Odd

Algorithm:

Step 1: Read number N

Step 2: Set remainder as N modulo 2

Step 3: If remainder is equal to 0 then number N is even, else number N is odd

Step 4: Print output.

Step 5: Stop

Algorithmic Problem Solving 1.33

Algorithm to determine whether a student passed the Exam or Not

Algorithm:

Step 1: Input grades of 4 courses M1, M2, M3 and M4,

Step 2: Calculate the average grade with formula “Grade=(M1+M2+M3+M4)/4”

Step 3: If the average grade is less than 60, print “FAIL”, else print “PASS”.

Step 4: Stop

Flowchart to print numbers from 1 to 20

Start

Initialize X< 0

Increment X by 1

Print X

X < 20

Yes

No

End

Flowchart to convert Temperature from Fahrenheit to Celsius

Start

C = 5/9*(F-32)

Print C

End

Read F

1.34 Problem Solving and Python Programming

Flowchart to determine and output whether number N is Even or Odd
Start

Remainder = N
Modulo 2

Remainder = 0?
Yes

End

Input N

No

Answer = ODDAnswer = EVEN

Output
Answer

Flowchart to determine whether a student passed the Exam or Not

Start

Grade =
(M1+M2+M3+M4)/4

If Grade < 60
Yes

End

Input M1,
M2m M3, M4

No

Print “PASS”Print “FAIL”

Algorithmic Problem Solving 1.35

TWO MARKS QUESTION & ANSWER

1.	 What is an algorithm?

An algorithm is defined as a step by step procedure for solving a problem. It is a set of rules to
solve a problem.

2.	 What are the characteristics of an algorithm?
•• In algorithms each and every instruction should be precise.
•• In algorithms each and every instruction should be unambiguous.
•• The instructions in an algorithm should not be repeated infinitely.
•• Ensure that the algorithm will ultimately terminate.
•• The algorithm should be written in sequence.
•• It looks like normal English.
•• The desired result should be obtained only after the algorithm terminates.

3.	 What is a pseudo code?

“Pseudo” means imitation of false and “code” refers to the instruction written in the programming
language. Pseudo code is programming analysis tool that is used for planning program logic.

•• Pseudo = copy (or) Duplicate, Code = instructions

•• It cannot be compiled or executed

•• It is written in natural language such as English, etc

•• It is used to concentrate on algorithm

4.	 What is a flow chart?

A Flowchart is a pictorial representation of an algorithm. It is often used by programmer as
a program planning tool for organizing a sequence of step necessary to solve a problem by a
computer. It contains different symbols.

Input/Output

Terminal

5. List the ways to represent an algorithm.
•• Normal English
•• Flowchart
•• Pseudo code
•• Decision table
•• Program

1.36 Problem Solving and Python Programming

6.	 Write some rules for drawing a flowchart.

•• The standard symbols must be used.

•• The arrowheads in the flowchart represent the direction of flow of control in the problem.

•• The usual direction of the flow of procedure is from top to bottom or left to right.

•• The flow lines should not cross each other.

•• Be consistent in using names and variables in the flowchart.

•• Keep the flowchart as simple as possible.

7.	 List few advantages and disadvantages of flowchart.

Advantages:

•• Makes logic clear

•• Communication

•• Effective Analysis

•• Useful in Coding

•• Proper Testing and Debugging

•• Appropriate Documentation

Disadvantages:

•• It cannot be prepared for difficult programs

•• Alterations and modifications cannot be done easily

8.	 List the limitations of flowcharts.

•• Complex

•• Costly

•• Difficult to Modify

•• No Update

9.	 List few advantages and disadvantages of pseudo code.

Advantages:

•• It can be done easily in any word processor.

•• It can be written easily.

•• It can be easily modified as compared to flowchart.

Disadvantages:

•• It is not visual.

Algorithmic Problem Solving 1.37

•• There are no accepted standards for writing pseudo codes.

•• It cannot be compiles nor executed.

10.	 What is the use of decision box in flowcharts?

The decision symbol is used in a flowchart to indicate the point where a decision is to be made
and branching done upon the result of the decision to one or more alternative paths. The criteria
for decision making are written in the decision box.

11.	 What do flowlines show?

Flowlines are solid lines with arrowheads which indicate the flow of operation. They show the
exact sequence in which the instructions are to be executed. The normal flow of the flowchart
is depicted from top to bottom and left to right.

12.	 List any two steps involved in problem solving.

The problem solving involves :

•• Detailed study of the problem

•• Problem redefinition

•• Identification of input data, output requirements and conditions and limitations

•• Alternative methods of solution

•• Selection of the most suitable method

•• Preparation of a list of procedures and steps to obtain the solution

•• Generating the output

13.	 Develop an algorithm and draw the flowchart to get marks for 3 subjects and declare the
result. If the marks >= 35 in all the subjects the student passes else fails.

Algorithm:

1. Start.

2. Declare three variables m1, m2, m3.

3. Read marks of three subjects m1, m2, m3.

4. If m1 >= 35 goto step 5 else goto step 7

5. If m2 >= 35 goto step 6 else goto step 7

6. If m3 >= 35 print Pass. Goto step 8

7. Print fail

8. Stop

1.38 Problem Solving and Python Programming

Flowchart:
Start

m1 = m2 = m3 =0

Read m1, m2, m3

M1>=35
No

M2>=35

M3>=35

Print PASS

Stop

Print FAIL

No

No

Yes

Yes

Yes

14.	 Develop an algorithm and draw the flowchart to compute average of three numbers.

Algorithm:

1. Start

2. Read numbers a,b,c

3. Compute the average as (a+b+c)

4. Print average

5. Stop

Flowchart:

Start

avg =(a+b+c)/3

Print avg

Stop

Read a, b, c

Algorithmic Problem Solving 1.39

15.	 Draw the flowchart for following: read age of a person. If age less than 60 then print “Not
a senior citizen” otherwise print “Senior Citizen”.

Start

Read Age

Yes

No

Age < 20
Print Not a

senior citizen

Print
senior citizen

Stop

16.	 Write pseudo code to compute area of rectangle.

READ length, breadth

COMPUTE area = length * breadth

DISPLAY area

17.	 Write pseudo code to evaluate student result.

READ student’s grade

IF student’s grade is greater than or equal to 60

PRINT “passed”

ELSE

PRINT “failed”

18.	 Mention the different symbols used in flowchart.

Start Stop

Terminal Symbols

Input/Output Connectors Flow LinesDecision Box

Processing

1.40 Problem Solving and Python Programming

19.	 What keywords are commonly used in Pseudocode?

Input: READ, INPUT, OBTAIN, GET

Output: PRINT, OUTPUT, DISPLAY, SHOW

Compute: COMPUTE, CALCULATE, DETERMINE

Initialize: SET, INIT

Add one: INCREMENT, BUMP

20.	 List out the rules in writing the pseudocode.

•• Start with an algorithm and phrase it using words that are easily transcribed into
computer instructions.

•• Indent when you are enclosing instructions within a loop or a conditional clause.

•• Avoid words associated with a certain kind of computer language.

•• Do not include data declarations in pseudo code.

