Local Search and Optimization

Outline

- Local search techniques and optimization
 - Hill-climbing
 - Simulated annealing
 - Genetic algorithms
 - Issues with local search

Local search and optimization

- Previous lecture: path to goal is solution to problem
 - systematic exploration of search space.
- This lecture: a state is solution to problem
 - for some problems path is irrelevant.
 - E.g., 8-queens
- Different algorithms can be used
 - Local search

reach the goal node Constraint satisfaction

optimize(objective fn) Constraint Optimization

You can go back and forth between the two problems Typically in the same complexity class

Genetic algorithms

- Twist on Local Search: successor is generated by combining two parent states
- A state is represented as a string over a finite alphabet (e.g. binary)
 - 8-queens
 - State = position of 8 queens each in a column
- Start with *k* randomly generated states (population)
- Evaluation function (fitness function):
 - Higher values for better states.
 - Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens
- Produce the next generation of states by "simulated evolution"
 - Random selection
 - Crossover
 - Random mutation

String representation 16257483

Can we evolve 8-queens through genetic algorithms?

- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

Has the effect of "jumping" to a completely different new part of the search space (quite non-local)