
LAMPORT’S ALGORITHM FOR MUTUAL EXCLUSION IN DISTRIBUTED SYSTEM

Lamport’s Distributed Mutual Exclusion Algorithm is a permission based algorithm

proposed by Lamport as an illustration of his synchronization scheme for distributed systems.

In permission based timestamp is used to order critical section requests and to resolve any

conflict between requests.

In Lamport’s Algorithm critical section requests are executed in the increasing order of

timestamps i.e a request with smaller timestamp will be given permission to execute critical

section first than a request with larger timestamp.

In this algorithm:

 Three type of messages (REQUEST, REPLY and RELEASE) are used and

communication channels are assumed to follow FIFO order.

 A site send a REQUEST message to all other site to get their permission to enter critical

section.

 A site send a REPLY message to requesting site to give its permission to enter the

critical section.

 A site send a RELEASE message to all other site upon exiting the critical section.

 Every site Si, keeps a queue to store critical section requests ordered by their timestamps.

request_queuei denotes the queue of site Si

 A timestamp is given to each critical section request using Lamport’s logical clock.

 Timestamp is used to determine priority of critical section requests. Smaller timestamp

gets high priority over larger timestamp. The execution of critical section request is

always in the order of their timestamp.

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Algorithm:

 To enter Critical section:

o When a site Si wants to enter the critical section, it sends a request message

Request(tsi, i) to all other sites and places the request on request_queuei. Here,

Tsi denotes the timestamp of Site Si

o When a site Sj receives the request message REQUEST(tsi, i) from site Si, it

returns a timestamped REPLY message to site Si and places the request of site Si

on request_queuej.

 To execute the critical section:

o A site Si can enter the critical section if it has received the message with

timestamp larger than (tsi, i) from all other sites and its own request is at the top

of request_queuei

 To release the critical section:

o When a site Si exits the critical section, it removes its own request from the top of

its request queue and sends a timestamped RELEASE message to all other sites

o When a site Sj receives the timestamped RELEASE message from site Si, it

removes the request of Si from its request queue

Message Complexity:

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section execution.

These 3(N – 1) messages involves

 (N – 1) request messages

 (N – 1) reply messages

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

 (N – 1) release messages

Drawbacks of Lamport’s Algorithm:

 Unreliable approach: failure of any one of the processes will halt the progress of entire

system.

 High message complexity: Algorithm requires 3(N-1) messages per critical section

invocation.

Performance:

 Synchronization delay is equal to maximum message transmission time

 It requires 3(N – 1) messages per CS execution.

 Algorithm can be optimized to 2(N – 1) messages by omitting the REPLY message in

some situations.

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

Vignesh JS
Highlight

