

Nadar Saraswathi College of Engineering and Technology, Vadapudupatti, Theni - 625 531

(Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai)

Format No.	NAC/TLP- 08a.2
Rev. No.	02
Date	29-11-2019
Total Pages	

Course Plan (Lab)

	For the Academic Year 2023 - 24 (Odd/Even Semester)									
Staff Name		VIGNESH L.S		Dept. / Desig	nation	AP/AI&DS	Strength	21		
Course/Branch B.Tech.,/AI & DS			Year / Sem	ester	II/IV	Credit	2			
Course Code/ Subject Code/ Choice		C409/AL3461		Subject Name	Machine Le	arning Lab				

I. Instructional Objective (5)

IO1 : To understand the data sets and apply suitable algorithms for selecting the appropriate features for analysis.

IO2 : To learn to implement supervised machine learning algorithms on standard datasets and evaluate the performance.

IO3 : To experiment the unsupervised machine learning algorithms on standard datasets and evaluate the performance.

IO4 : To build the graph based learning models for standard data sets.

IO5 : To compare the performance of different ML algorithms and select the suitable one based on the application.

II. Pre Requisites: Should have the basic knowledge of Artificial Intelligence.

Course Outcomes (5): At the end of the course, the student should be able to:

CO's	Outcomes	Bloom's
		Taxonomy
C409.1	Apply suitable algorithms for selecting the appropriate features for analysis.	BT1
C409.2	Implement supervised machine learning algorithms on standard datasets and evaluate the	BT4
	performance.	
C409.3	Apply unsupervised machine learning algorithms on standard datasets and evaluate the	BT4
	performance.	
C409.4	Build the graph based learning models for standard data sets.	BT1,BT4
C409.5	Assess and compare the performance of different ML algorithms and select the suitable one	BT1,BT4
	based on the application.	

III. CO-PO, PSO Correlation Matrix: (3- > Strong, 2- > Moderate, 1 - >| Low)

CO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5
PO,PSO																	
C307.1	3	1	3	3	-	-	-	-	1	1	1	3	2	2	1	3	-
C307.2	2	2	1	3	1	-	-	-	3	2	3	1	1	1	2	3	-
C307.3	2	1	3	1	-	-	-	-	2	3	2	1	2	1	1	3	-
C307.4	2	2	3	1	-	-	-	-	1	3	2	1	2	1	2	3	-
C307.5	3	3	1	3	1	-	-	-	1	3	2	3	3	3	2	3	-

IV. E-Learning Resources

EL1: : <u>www.lsisreviving.weebly.com</u>

V. No. of Students/Batch :

S.No	Students Register Number	Total No of Students	Batch Number
1	921022243001 to 921022243005	21	1
	921022243008 to 921022243023		

VI. Lab Location: DENNIS LAB

VII. Method of Evaluation (Considered for CO Assessment) :

	CO Assessment Direct											
CO Evaluation Internal :												
Int 1,2/	Int 1,2/ Unit / CAT Case Study Assign., Seminar Quiz GD RP Project/Lab											
Mod 1,2		-						-	_			
Yes	No	No	No	No	Yes	NA	NA	Yes	Yes			
	CO Assessment Indirect											
		Course Exit	Survey					Yes				

VIII. Co Attainment analysis:

Tongot	Model	Exam – 25 %		Lab Experiment	ts -75 %			
Competence	Internal	If Class average is less than	n 75% -	If Class average	is 75% and above -			
Throshold	Exam**	Threshold is 50%		Threshold is 75%				
(Level)	University	If Class average is less than	n 70% -	If Class average	is 70% and above -			
(Level)	Exam**	Threshold is 50%		Threshold is 70%				
Donohmont &	70% Stu	dents Got More Than Target	Competen	ce Level	3			
Attainment	60% Stu	dents Got More Than Target	Competen	ce Level	2			
Attainment Lovol	50% Stu	dents Got More Than Target	Competen	1				
Level		If Students Below 50% of		Not Met				
		Att	Attainment Scores in Scale of 3					
CO At	ttainment	Direct Attainment of	= 0.8 * 0	CO attainment (Direc	(t) + 0.2 * CO			
Calc	rulations	COs	attainmen	nt (In-Direct)	200			
Cure	ulutions	Overall Attainment of	= 0.5 * C	O attainment (Intern	al Overall) + 0.5 * CO			
		CO	attainmen	nt (University)				
PO Individ	ual Attainment	= Overall Attainment of	CO *(Ave	rage of CO-PO Ma	apping Score of			
Calc	culations	Individual POs / 3)						
PSO Individ	lual Attainment	= Overall Attainment of	= Overall Attainment of CO *(Average of CO-PSO Mapping Score of					
Calc	ulations	Individual PSOs / 3)	Individual PSOs / 3)					
1.11	iuui u	iui uuiiuu		unda	U U I			

IX. Experiment Plan:(Cyclic Order: Yes/ No)

S		~~		Cumulative
S. No.	Торіс	CO	BTL	Periods
1	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.	CO1	BT1	7
2	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	CO2	BT4	14
3	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	CO2	BT4	21
4	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file and compute the accuracy with a few test data sets.	CO2	BT4	28

5	Implement naïve Bayesian Classifier model to classify a set of documents and measure the accuracy, precision, and recall.	CO2	BT4	34
6	Write a program to construct a Bayesian network to diagnose CORONA infection using standard WHO Data Set.	CO2	BT4	40
7	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using the k-Means algorithm. Compare the results of these two algorithms.	CO3 CO5	BT1,BT4	46
8	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.	CO3	BT1,BT4	53
9	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select an appropriate data set for your experiment and draw graphs.	CO4	BT1,BT4	60

X. Content Beyond Syllabus :

Course Code & Title	Syllabus of content beyond syllabus	Tota Lecture (L)	al Number Tutorial (T)	of contact h Practical (P)	ours Total Hours	Contributing COS	Contributing POs & PSOs
Basic Applications	Python tools installation & ML related applications	199	3	3	8		

XI. Model Practical Test :

No.	Tentative Date	Portion	Total	Appear	Pass	%
1			1			1
2					1	
3	Naria	ar Saraswathi In	P	CIP.	nt.	

Engineering & Technology