
IN-ORDER TREE TRAVERSAL IN PYTHON

You might have studied algorithms to traverse a python dictionary, a list, or a tuple. In this

article, we will study the in-order traversal algorithm to traverse a binary tree. We will also

discuss the implementation of the algorithm.

What is an In-order tree traversal algorithm?

In-order tree traversal algorithm is a depth first traversal algorithm. It means that we traverse

the children of a node before traversing its siblings. In this way, we traverse to the maximum

depth, print the elements till the last node and then come back to the top to print other

elements.

The algorithm is termed as in-order traversal algorithm because, when we traverse a binary

search tree using this algorithm, The elements of the tree are printed in increasing order of their

value.

Algorithm for In-order Traversal

We know that, In a binary search tree, The left child of any node contains an element less than

the current node and the right child of a node contains an element greater than the current

node. So, to print the elements in order, we will have to print the left child first, then the current

node and the right child at last. This same rule will be used to print each node of the tree.

We will start from the root node, will traverse the left child or left sub-tree of the current node

and then we will traverse the current node. At last we will traverse the right child or right sub-

tree of the current node. We will perform this operation recursively till all the nodes are

traversed.

To understand the concept better, let us use an example binary search tree and traverse it using

the In-order binary tree traversal algorithm.

In-order Tree Traversal in Python

In-order Tree traversal

Here, we will start from root node 50. Before printing 50, we have to traverse the left subtree of

50. So, we will go to 20. Before printing 20, we have to traverse the left subtree of 20. So, we will

go to 11. As 11 has no children, we will print 11 and move upwards to 20. After printing 20, we

will traverse right subtree of 20. As 22 has no children, we will print 22 and move upwards to

50. At 50, its left subtree has been traversed, so we will print 50. After that we will traverse the

right subtree of 50 using the same process. The in-order traversal of whole tree is : 11, 20, 22,

50, 52, 53, 78.

Implementation of In-order tree traversal in Python

The algorithm for in-order tree traversal can be formulated as follows.

1. Recursively Traverse the left sub-tree.

2. Print the root node.

3. Recursively Traverse the right sub-tree.

Here, we print the element in the node only if it is a leaf node or all the elements in its left

subtree have already been printed.

We will now implement the above algorithm in python and will execute it for the binary search

tree given in the above example.

class BinaryTreeNode:

 def __init__(self, data):

 self.data = data

 self.leftChild = None

 self.rightChild = None

def inorder(root):

 # if root is None,return

 if root == None:

 return

 # traverse left subtree

 inorder(root.leftChild)

 # print the current node

 print(root.data, end=" ,")

 # traverse right subtree

 inorder(root.rightChild)

Gamer
Sticky Note
Binary tree node
class Node:
 def __init__(self, data):
 self.data = data
 self.left = None
 self.right = None

Inorder traversal function
def inorder_traversal(root):
 if root is not None:
 # Traverse the left subtree
 inorder_traversal(root.left)

 # Visit the current node
 print(root.data, end=" ")

 # Traverse the right subtree
 inorder_traversal(root.right)

Example usage
Create a binary tree
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

Perform inorder traversal
print("Inorder traversal: ", end="")
inorder_traversal(root)

def insert(root, newValue):

 # if binary search tree is empty, create a new node and declare it as root

 if root is None:

 root = BinaryTreeNode(newValue)

 return root

 # if newValue is less than value of data in root, add it to left subtree and proceed recursively

 if newValue < root.data:

 root.leftChild = insert(root.leftChild, newValue)

 else:

 # if newValue is greater than value of data in root, add it to right subtree and proceed

recursively

 root.rightChild = insert(root.rightChild, newValue)

 return root

root = insert(None, 50)

insert(root, 20)

insert(root, 53)

insert(root, 11)

insert(root, 22)

insert(root, 52)

insert(root, 78)

print("Inorder traversal of the binary tree is:")

inorder(root)

Output:

Inorder traversal of the binary tree is:

11 ,20 ,22 ,50 ,52 ,53 ,78 ,

