Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

() (e
\

IO DI
7.6 Binary Heaps

In binary heap each node may have up to two children. In practice, binary heaps are enough and we concentrate
on binary min heaps and binary max heaps for the remaining discussion.

Representing Heaps: Before looking at heap operations, let us see how heaps can be represented. One
possibility is using arrays. Since heaps are forming complete binary trees, there will not be any wastage of
locations.

For the discussion below let us assume that elements are stored in arrays, which starts at index 0. The previous
max heap can be represented as:

17 13 6 1 4 2 5
0 1 2 3 4 5 6

Note: For the remaining discussion let us assume that we are doing manipulations in max heap.
Declaration of Heap

class Heap:
def _init__(self):

self.heapList = [0] ## Elements in Heap
self.size = 0 #t Size of the heap

Time Complexity: O(1).

Parent of a Node

. . . . i=1 3 . .
For a node at i location, its parent is at — location. In the previous example, the element 6 is at second
location and its parent is at 0" location.

def parent(self, index):

nrw

Parent will be at math.floor(index/2). Since integer division
simulates the floor function, we don't explicitly use it

nun

return index / 2

Time Complexity: O(1).

Children of a Node

Similar to the above discussion, for a node at i*" location, its children arc at 2+i+1 and 2 +i + 2 locations. For
example, in the above tree the element 6 is at sccond location and its children 2 and 5 are at5(2=i+1 = 2+ 2+
1)and 6 (2+i+ 2 =2+2+ 2) locations,

def leftChild(self, index): def rightChild(self, index):
""" 1 is added because array begins at index 0 """ return 2 * index + 2
return 2 * index + 1

Time Complexity: O(1). Time Complexity: O(1).

7.6 Binary Heaps 214

Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

Getting the Maximum Element

Since the maximum element in max heap is always at root, it will be stored at heapList|0].

#Get Maximum for MaxHeap #Get Minimum for MinHeap
def getMaximum(self): def getMinimum(self):
if self.size == 0: if self.size == 0:
return -1 return -1
return sclf.heapList|[0] return self.heapList[0]
Time Complexity: O(1). Time Complexity: O(1).

Heapifying an Element

After inserting an element into heap, it may not satisfy the heap property. In that case we need to adjust the
locations of the heap to make it heap again. This process is called heapifying. In max-heap, to heapify an
element, we have to find the maximum of its children and swap it with the current element and continue this
process until the heap property is satisfied at every node. In min-heap, to heapifly an element, we have to find
the minimum of its children and swap it with the current element and continue this process until the heap

property is satisfied at every node.

ofoloiio
\
010010

Observation: One important property of heap is that, if an element is not satisfying the heap property, then all
the elements from that element to the root will have the same problem. In the example below, element 1 is not
satislying the heap property and its parent 31 is also having the issue. Similarly, if we heapify an clement, then
all the elements from that element to the root will also satisfy the heap property automatically, Let us go
through an example. In the above heap, the element 1 is not satislying the heap property. Let us try heapifying
this element,

To heapify 1, find the maximum of its children and swap with that.

N

{10) @
\ ’
~eaef /

N\

A\

i e

e \\

We need to continue this process until the element satisfics the heap properties. Now, swap 1 with 8.

7.6 Binary Heaps 215

Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

8

ON
rd
&S ®

~

!

=
Al
)
!
rd
5 IR
I’
—J-'\-\
-
Al
QO
\ Fl
S
Now the tree is satisfying the heap property. In the above heapifying process, since we are moving from top to

bottom, this process is sometimes called percolate down. Similarly, if we start heapifying from any other node to
root, we can that process percolate up as move from bottom to top.

def percolateDown(selfi):
while (i * 2) <= self.size:
minimumChild = self.minChild(i) _
if self.heapList[i] > self.heapList{minimumChild|:
tmp = self.heapListli]
self.heapList[i] = self.heapList[minimumChild]
self.heapList|minimumChild] = tmp
i = minimumChild
del minimumChild(self,i):
ifi*2 + 1 > self.size:
return i * 2
else:
if self.heapList|i*2] < self.heapList[i*2+1]:
return i * 2
else:
returni* 2 + 1

def percolateUp(self,i):
whilei // 2> 0:
if self.heapList|i] < self.heapListl|i // 2]:
tmp = self.heapList[i // 2]
self.heapList|i // 2| = self.heapListli]
self.heapList[i] = tmp
i=i//2
Time Complexity: O(logn). Heap is a complete binary tree and in the worst case we start at the root and come
down o the leal. This is equal to the height of the complete binary tree. Space Complexity: O(1).

Deleting an Element

To delete an clement from heap, we just need to delete the element from the root. This is the only operation
(maximum element) supported by standard heap. After deleting the root element, copy the last element of the
heap (tree) and delete that last element.
After replacing the last element, the tree may not satisfy the heap property, To make it heap again, call the
PercolateDown function,

* Copy the first element into some variable

e Copy the last element into first element location

e PercolateDown the first element

#fDelete Maximum for MaxHeap #Delete Minimum for MinHeap

def deleteMax(self): def deleteMin(sell):
retval = sell.heapList[1] retval = sell.heapList]1]
self.heapList[1] = self.heapList|self.size| sell.heapList|1] = self.heapList[self.size]
sell.size = self.size - 1 sell.size = sell.size - 1
sell.heapList.pop() sell.heapList.pop()
self.percolateDown(1) sell.percolateDown(1)

7.6 Binary Heaps 216

Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

return retval return retval
Time Complexity: O(logn). Time Complexity: O(logn).

Note: Dcleting an element uses PercolateDown, and inserting an element uses PercolateUp.
Time Complexity: same as Heapify function and it is O(logn)

Inserting an Element

Insertion of an clement is similar to the heapify and deletion process.

* Increase the heap size
¢ Keep the new element at the end of the heap (tree)
¢ Heapify the element from bottom to top (root)

Before going through code, let us look at an example. We have inserted the element 19 at the end of the heap

and this is not satisfying the heap property. i

(20 (D))
In order to heapify this element (19), we need to compare it with its parent and adjust them. Swapping 19 and 14

gives: @

e
4 ¢ \l
r
‘ v ,
L =
p
!
1
!

Again, swap 19 and16: °

7.6 Binary Heaps e

Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

Now the tree is satisfying the heap property. Since we are following the bottom-up approach we sometimes call
this process percolate up.

def insert(self,k):
sell.heapList.append(k)
self.size = self.size + 1
sell. percolateUp(self. size)

Time Complexity: O(logn). The explanation is the same as that of the Heapify function.

Heapifying the Array

One simple approach for building the heap is, take n input items and place them into an empty heap. This can
be done with n successive inserts and takes O(nlogn) in the worst case. This is due to the fact that each insert
operation takes O(logn).

To finish our discussion of binary heaps, we will look at a method to build an entire heap from a list of keys. The
first method you might think of may be like the following. Given a list of keys, you could easily build a heap by
inserting each key one at a time. Since you are starting with a list of one item, the list is sorted and you could
use binary scarch to find the right position to insert the next key at a cost of approximately O(logn) operations.
However, remember that inserting an item in the middle of the list may require O(n) operations to shift the rest
of the list over to make room for the new key. Thereflore, to insert n keys into the heap would require a total of
Of(nlogn) operations. However, if we start with an entire list then we can build the whole heap in O(n) operations.

Observation: Leaf nodes always satisfy the heap property and do not need to care for them. The leal clements
arc always at the end and to heapify the given array it should be enough if we heapify the non-leafl nodes. Now
let us concentrate on finding the first non-leaf node. The last element of the heap is at location h — count — 1,
and to find the first non-leafl node it is enough to find the parent of the last element.

O
(" O}

AN
)
L2 I
v il
~ 1
R

(size — 1)/2 is the location of
o o first non-leafl node

def buildHeap(self,A):
i=len(A) // 2
self.size = len(A)
sell.heapList = [0] + Al;]
while (i > 0):
self. percolateDown(i)
i=i-1
Time Complexity: The linear time bound of building heap can be shown by computing the sum of the heights of
all the nodes. For a complete binary tree of height h containing n = 2"*1- 1 nodes, the sum of the heights of the
nodes isn- h-1=n—logn—1 (for proof refer to Problems Section). That means, building the heap operation can
be done in linear time (O(n)) by applying a PercolateDown function to the nodes in reverse level order.

7.7 Heapsort

One main application of heap ADT is sorting (heap sort). The heap sort algorithm inserts all elements (from an
unsorted array) into a heap, then removes them from the root of a heap until the heap is empty. Note that heap
sort can be done in place with the array to be sorted. Instead of deleting an element, exchange the first element
(maximum) with the last element and reduce the heap size (array size). Then, we heapily the first element.
Continue this process until the number of remaining elements is one,

7.7 Heapsort 218

Data Structure and Algorithmic Thinking with Python Priority Queues and Heaps

def heapSort(A):
convert A to heap
length =len(A) - 1
leastParent = length / 2
for i in range (leastParent, -1, -1):
percolateDown(A, i, length)

flatten heap into sorted array
for i in range (length, 0, -1):
if A[O] > Ali}:
swap(A, 0,1)
percolateDown(A, 0,1-1)

#Modfied percolateDown to skip the sorted elements
def percolateDown(A, first, last):
largest = 2 * first + 1
while largest <= last:
right child exists and is larger than left child
if (largest < last) and (A[largest] < Allargest + 1]):
largest += 1

right child is larger than parent
if Allargest] > Alfirst]:
swap(A, largest, first)
move down to largest child
first = largest;
largest = 2 * first + 1
else:
return # force exit

def swap(A, X, y):
temp = Alx|
Alx] = Aly]
Aly] = temp
Time complexity: As we remove the elements from the heap, the values become sorted (since maximum elements
are always root only). Since the time complexity of both the insertion algorithm and deletion algorithm is O(logn)
(where n is the number of items in the heap), the time complexity of the heap sort algorithm is O(nlogn).

7.8 Priority Queues [Heaps]: Problems & Solutions

Problem-1 What are the minimum and maximum number of elements in a heap of height h?

Solution: Since heap is a complete binary tree (all levels contain full nodes except possibly the lowest level), it
has at most 2! — 1 elements (if it is complete). This is because, to get maximum nodes, we need to fill all the h
levels completely and the maximum number of nodes is nothing but the sum of all nodes at all i levels.

To get minimum nodes, we should fill the h — 1 levels fully and the last level with only one element. As a result,
the minimum number of nodes is nothing but the sum of all nodes from h — 1 levels plus 1 (for the last level) and
we get 2" — 14 1 = 2" elements (if the lowest level has just 1 element and all the other levels are complete).

Problem-2 Is there a min-heap with seven distinct elements so that the preorder traversal of it gives the
clements in sorted order?

Solution: Yes. For the tree below, preorder traversal produces ascending order.

(D)

Problem-3 Is there a max-heap with seven distinet elements so that the preorder traversal of it gives the
clements in sorted order?

7.8 Priority Queues [Heaps]: Problems & Solutions 219

