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7 .6 Binary Heaps 
In bina ry heap each node may have up to two children. In practice, binary heaps a re enough a nd we concentrate 
on binary min heaps and binary max heaps for the remaining discussion. 

Representing Heaps : Before looking a t hea p operations, let us see how heaps can be represen ted. One 
possibility is u s ing arrays. Since heaps a re forming complete binary t rees, there will nol be a ny wastage of 
locations. 

Por the d iscussion below let us assume that clements arc s tored in arrays, wh ich starts at index 0. The previous 
max hea p can be represented as: 

17 13 6 l 4 2 5 

0 2 3 4 5 6 

Note: Por the remain ing discussion let us assume that we are doing ma nipulations in max heap. 

Declaration of Hea p 

c lass Heap: 
def init_ {self): 

self.heapList = !OJ 
self.size = 0 

Time Complexity: 0(1). 

Parent of a Node 

# Elements in Heap 
# Si7.c of the heap 

F'or a node al i 11' location, its pa rent is at !.f location. In the previous example, the e lement 6 is at second 
location and its parent is al ot1• location. 

def parent(self, index): 

Parent will be at math.floor(index/2). Since integer division 
s imulates the floor function, we don't explicitly use it 
.,,.11 

return index I 2 

Time Complexity: 0(1). 

Children of a Node 
Similar to Lhc above discussion, for a node at i 11' location, its children a rc al 2 • i + 1 and 2 • i + 2 locations . Por 
example, in the above tree the element 6 is at second location and its children 2 a nd 5 arc at 5 (2 * i + 1 = 2 • 2 + 
1) and 6 (2 * i + 2 = 2 ,. 2 + 2) locations. 

def leftChild(self, index): 
""" I is added because a rmy begins at index 0 """ 
return 2 • index + 1 

Time Complexi:ty: 0(1 ). 
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def rightChild{self, index): 
rclum 2 * inde.x + 2 

Time Complexity: 0(1). 
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Getting the Maximum Element 
Since Lhe maximum element in max heap is always al root, it will be slored at hcapListiOJ. 

l#Get Maximum for MaxHeap l#Get Minimum for Min Heap 
def getMaximum(seln: def gctMinimum(seln: 

if self.si;-,c == 0: if self.size .. = 0: 
return - 1 return - 1 

return sclf.heapList[O] return sclLheapList[O] 

Time Complexity: 0(1). Time Complexity: 0(1). 

Heapifying an Element 
After inserting un clemen t into heap, it may not satisfy the heap property. In that case we need to adjust the 
localions or the heap to make it heap again. This process is called lr.aa11i fyi11.11. In mux- heap, to heapiCy an 
e lement, we have to find the maximum of its children and swap it with the current c lement a nd continue this 
process until the heap property is satisfied at every node. In min-heap, to heapify an clement, we have to find 
the minimum of its children a nd swap it with the current element a nd continue this process until the heap 
property is satisfied at every node. 

Observation: One important property of heap is that, if an clement is not satisfying the heap property, then all 
the e lements from Lhal clement to the root will have Lhe same problem. In the example below, e lement 1 is not 
:satisfying the heap property and its parent 31 is a lso having the issue. Simila rly, if wc hcapify an c lement, then 
a ll the clements from that c lement to the root will a lso sulisfy the heap properly <1utomalica lly. Let us go 
Lhrough an example. In the a bove heap, lhc element I is nol satisfying Lhe heap properly. Le t us try hcapifying 
this clement. 

To hcapify 1, find Lhe maximum of its children and swap with that. 

We need Lo continue this process until the clement satisfies Lhe heap properties. Now, swap 1 with 8. 
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Now the tree is sa tisfying the heap properly. In the above heapify ing process, s ince we a re moving from lop lo 
bottom, lhis process is sometimes called pe1·colate down. Simila rly, if we s ta rt heapify ing from any other node to 
root, we ca n tha l process percolate up as move from bottom lo Lop. 

def pe.reolateDown(self,i): 
while (i * 2) <= self.size: 

minimumChild = sclf.minChild(i) 
if self. heapList[i] > sclf.heapListlminimumCnildl: 

Lmp = self. heapList[il 
sclf.hcapLisllil = self. heapList[min imumChild] 
sclf.heapList!minimumChildJ = tmp 

i = minimumChild 

def minimumChild(self,i): 
if i * 2 + 1 > self.si7,e: 

return i * 2 
else: 

if self.heapListli*21 < self.heapListli*2+1]: 
return i * 2 

else: 
return i * 2 + 

def pcrcolatcUp(self,i): 
while i / / 2 > 0: 

if self.heapLisl[il < self.heapList[i / / 2]: 
tmp = self.heapListli I I 21 
self.heapList!i // 21 = self.heapList[il 
sclf.heapListFI = lmp 

i ... i // 2 

Time Complexity: 0(10911). I leap is a complete binary tree and in the worst case we sla rl a l lhe root a nd come 
down to the lea f. Thi8 is equal lo the height of the complete bina ry tree . S pace Complexity: 0(1). 

Deleting an Element 
To delete a n c lemen t from hea p, we just need to delete the clement from the root. This is the only operation 
(maximum ele me nl) s upported by standard heap. Afler deleting the root e lemenl, copy the lasl clement of the 
heap (tree) and delete Lhat last clement. 

After replacing the lrrnt cle ment, the t ree may not satisfy the heap propcny. To make it heap aga in, call the 
Pe1·colateDow11 function. 

• Copy the first e lement into some variable 
• Copy the last clement into first clement location 
• PercolaLeDown lhe first element 

#Delete Maximum for MaxHeap 
def deleteMax(seIO: 

rcLval = self.heapList( 11 
self. hea pListl l I "' self. hea,pListlself. size! 
self.s i;-,c = self.size - I 
self.heapList.pop() 
self.pcrcolatcDown( L) 
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#Delclc Minimum for MinHeap 
def deleteMin(selO: 

rctva1 = self. heapLisL( 11 
self. hcapList( 11 = self. heapListlself.sizel 
self.s ize .. self.size - I 
self. heap List. pop() 
self. percola teDown( 1) 
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relum retval return rctval 
Time Complexity: O(lo9n). Time Complexity: O(logn). 

Note : Deleting an clement uses PercolateDown, and inserting an clement uses PercolateUp. 
Time Complexity: same as lleapif y function and it is 0(10911) 

Inserting an Element 
Insertion of an clement is s imilar Lo Lhe hcapify a nd deletion process. 

• Increase the heap size 
• Keep the new element at the end of the heap (tree) 
• Hcapify the clement from bottom to top (root) 

Before going through code, let us look at an example. We have inserted the c lement 19 at the end of the heap 
and this is not satisfying the heap property. 

, ' , \ 

I 19 I 
\ I 

.... __ .... 

In order to hcapify this element (19), we need to compare it with its parent and adjust them. Swapping 19 and 14 
gives: 

/\r,.iin, swap 19 andl 6: 
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Now the tree is satisfying the heap property. Since we are following the bottom-up approach we sometimes call 
this process percolate ·up. 

def inscrt(self,k): 
self.hcapList.append(k) 
self.size = self.size + l 
self. percolateU p(self.s ize) 

Ti me Com plexity: O(logn). The expla nulion is the same as that of the lleapify func tion. 

Heapifying the Array 
One simple approach for bu ilding the heap is. take n input item s and place them into a n empty heap. This can 
be done with n successive inserts and takes O(nlogn) in the worst case. This is due to the fact that each insert 
operation takes O(logn). 

To finish our d iscussion of binary heaps, we will look al a method lo bui ld an entire heap from a list of keys. The 
first method you migh t think of may be like t he following. Given a list of keys, you could easily build a heap by 
inserting each key one at a time. Since you are starting with a list of one item, the !isl is sorted and you could 
use binary search to find the right position lo insert the nexl key al a cosl of approxima tely O(logn) operations. 
However , remember that insert ing a n item in the middle of the list may require O(n) operations to s hift the rest 
of lhe lis t ove r to make room fo r the new key. Therefore , to insert n keys into the heap would require a tota l of 
O(nlo911) operations . Howeve r, if we st.art with an en t ire !isl then we ca n build the whole heap in O(n) opera! ion s . 

Obs ervation: Leaf nodes a lways salisfy the heap property a nd do not need Lo care for them. The leaf clements 
are a lways al Lhe end and to heapify the g iven array it s hou ld be enough if we hcapify the non-leaf nodes. Now 
let us concentrate on finding the first non -leaf node. The last element of the heap is al location h -. counl - 1, 
and Lo find the first non-leaf node it is enough to fmd the parent of the last c lement. 

def buildHeap(self,A): 
i = len(A) I I 2 
self.size = len(A) 
self. heapList = IOI + A[:I 
while (i > 0): 

self. percolatcDown (i) 
i = j - 1 

~ ' \ - , G I \ 

l 21 I 18 
I I 

1-~ (si" - 1)/2 ;, the locat;on of 0 first non- leaf node 

Time Complexity: The linear time bound of bui lding heap can be shown by compuling Lhe su m of Lhc heights of 
a ll lhc nodes. ror a complete binary tree of height h containing n = 21111

- I nodes, the sum of the heights of the 
nodes is 11 - h - l = n - logn - 1 (for· proof refer lo Problems Section). That means, building the heap operation can 
be done in linear time (O(n)) by applying a PercolateDown fu nction to the nodes in reverse level o rder. 

7. 7 Heapsort 
One mc.iin c.ipplication of heap ADT is sorting (heap sort) . The heap sort ulgorithm inserts all elemt.:nls (from an 
unsorted array) into a heap, then removes them from the root of a heap until the heap is em pty. Nole lhal heap 
sort can be done in place with the array lo be sorted . Instead of deleting nn clcmt.:nt, exchange the first e lement 
(maximum) with the last e le me nt a nd red uce t he heap s ize (array s ize). Then, we hea pify the fi rst elemen L. 
Contin ue this process until t he nu mbe r of re maining elements is one. 
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def hcapSort( A): 
# convert A to heap 
length • len( A) - I 
lcastParent = length / 2 
for i in range ( leastParent. - 1, -1 ): 

pcrcoleteDown( A. i, length ) 

# fiallen heap into sorted array 
for i in range (length, 0, -1 ): 

if AIOI > Alil: 
swap( A, 0, i ) 
pcrcolateDown( A, 0, i - 1 ) 

ltModfied percolateDown to skip the sorted elements 
def percolntcnown( A, first, last): 

l~ll'gcst • 2 • first + I 
while lurgcst <'" last: 

ti ri~hl child exists and is larger than left ch ild 
if (largest< last) and ( A(largest] < Allargest + I] ): 

largest+= 1 

#right child is larger than parent 
if Apargcst] > Alfirstl: 

swap( A, largest, first) 
# move down to largest child 
first - largest.; 
largest 2 • first + I 

else: 
return # force exit 

def swap( A, x. y ): 
temp• Alxl 
Alxl - Aly] 
Aly) - temp 

Priority Queues and Heaps 

Time complexity: As we remove the clements from the heop, the volues become sorted (since maximum clements 
urc ulwuys ront only). Since the time complexity of both the insertion algorithm and deletion a lgorithm is O(/og11) 
(where 11 is the number of items in the heap), the time complexity of the heap sort algorithm is 0(11lo9n). 

7.8 Priority Queues [Heaps]: Problems & Solutions 
Problem-1 Whnl nrc the minimum and maximum number of clement:; in u heap of height It? 

Solution: Since heap i::; a complete binary tree (ull levels con tain full nodes except possibly the lowest level), it 
hns at most 2111 1 

- I clements (if it is complete). This is becuuse, to gel mnximum nodes, we need to fill ull the II 
levels complc1ely und the maximum number of nodes is nothing but the sum of all nodes at a ll h levels. 

To get minimum nodes, we should fill the h - 1 levels fully and the last level with only one element. As a result, 
the minimum number of nodes is nothing but the sum of nll nodes from It - 1 levels plus 1 (for the last level) and 
we get 211 

- 1 + 1 = 2h elements (if the lowest level has just 1 clement and all the other levels are complete). 

Problcm-2 Is there a min-heap with seven distinct clements so that the prcorder traversal or it gives the 
clements in sorted order? 

Solution: Yes. ror the tree below, preorder u·aversal produces nsccnding order. 

Problcm-3 Is there a max-heap with seven distinct c lemen ts so that the preordcr traversal of it gives the 
clements in soned order? 
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