MACs Based on Hash Functions: HMAC

e There has been increased interest in developing a
MAC derived from a cryptographic hash function

e Motivations:

e Cryptographic hash functions such as MD5 and SHA
generally execute faster in software than symmetric
block ciphers such as DES

e Library code for cryptographic hash functions is
widely available

HMAC has been chosen as the mandatory-to-implement
MAC for IP security

Has also been issued as a NIST standard (FIPS 198)

HMAC Design Objectives

e RFC 2104 lists the following objectives for HMAC:

e To use, without modifications, available hash
functions

e To allow for easy replaceability of the embedded
hash function in case faster or more secure hash
functions are found or required

e To preserve the original performance of the hash
function without incurring a significant degradation

e To use and handle keys in a simple way

e To have a well understood cryptographic analysis of
the strength of the authentication mechanism based
on reasonable assumptions about the embedded
hash function

HMAC Algorithm

HMAC Algorithm

Figure 12.5 illustrates the overall operation of HMAC. Define the following
terms.

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

IV = initial value input to hash function

M = message input to HMAC (including the padding specified in the
embedded hash function)

Yi=ith blockof M, 0...i...(L-1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secret key; recommended length is U n; if key length is greater than b, the
key is input to the hash function to produce an n-bit key

K* = K padded with zeros on the left so that the result is b bits in length
ipad = 00110110 (36 in hexadecimal) repeated b/8 times

opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

HMAC(K, M) = H[(K* @ opad) |\H[{K+ @ ipad) || M]]

HMAC
Structure

K ipad

=

. bbits __ bhits

1l

vt) Hash

K+ Dpﬂd n bits

L J C s, Il M)

| b bits pad to b bits

h 4 h 4

IV ——— | Hash

n hits
1 HMAC(K, M)

Figure 12.5 HMAC Structure

We can describe the algorithm as follows.

1. Append zeros to the left end of K to create a b-bit string K+
(e.q., if K is of length 160 bits and b =512, then K will be
appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit
block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the
result.

Security of HMAC

e Depends in some way on the cryptogr}aphfc
strength of the underlying hash function

e Appeal of HMAC is that its designers have
been able to prove an exact relationship
between the strength of the embedded hash
function and the strength of HMAC

e Generally expressed in terms of the
probability of successful forgery with a given
amount of time spent by the forger and a
given number of message-tag pairs created
with the same key

Cipher Block based MAC(CMAC)

C1 — E(K Ml)
¢, = EK[M®CG])
C; = HK.[M;®G))

C, = E(K, [MH @ Ch1 @ Kl]}

r = MSBTFEH{CH]
where
T = message authentication code, also referred to as the tag
Tlen = bit length of T

MSB(X) = the s leftmost bits of the bit string X

b
Eitt LS|
]
]
]
k ;
K—p| Encrypt K—p{ Encrypt ! K —p{ Encrypt
l —— I
MSB(Tlen) T
(a) Message length is integer multiple of block size
My M3 . e @ M, | 10..0
poTTTsssssssssssses K3
1
]
i
K—p| Encrypt K—p| Encrypt i K —p| Encrypt
1
1

MSB(Tlen) T

(b) Message length is not integer multiple of block size

Figure 12.8 Cipher-Based Message Authentication Code (CMAC)

Authenticated Encryption (AE)

A term used to describe encryption systems that
simultaneously protect confidentiality and
authenticity of communications
Approaches:

e Hash-then-encrypt: E(K, (M || h))

e MAC-then-encrypt: T = MAC(K,, M), E(K,, [M || T])

e Encrypt-then-MAC: C = E(K,, M), T= MAC(K,, C)

e Encrypt-and-MAC: C = E(K,, M), T = MAC(K,, M)
Both decryption and verification are
straightforward for each approach

There are security vulnerabilities with all of these
approaches

