
MACs Based on Hash Functions: HMAC

• There has been increased interest in developing a
MAC derived from a cryptographic hash function

• Motivations:
• Cryptographic hash functions such as MD5 and SHA

generally execute faster in software than symmetric
block ciphers such as DES

• Library code for cryptographic hash functions is
widely available

• HMAC has been chosen as the mandatory-to-implement
MAC for IP security

• Has also been issued as a NIST standard (FIPS 198)

HMAC Design Objectives

• RFC 2104 lists the following objectives for HMAC:
• To use, without modifications, available hash

functions

• To allow for easy replaceability of the embedded
hash function in case faster or more secure hash
functions are found or required

• To preserve the original performance of the hash
function without incurring a significant degradation

• To use and handle keys in a simple way

• To have a well understood cryptographic analysis of
the strength of the authentication mechanism based
on reasonable assumptions about the embedded
hash function

HMAC Algorithm
• HMAC Algorithm
• Figure 12.5 illustrates the overall operation of HMAC. Define the following

terms.
• H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)
• IV = initial value input to hash function
• M = message input to HMAC (including the padding specified in the

embedded hash function)
• Yi = i th block of M, 0 … i … (L - 1)
• L = number of blocks in M
• b = number of bits in a block
• n = length of hash code produced by embedded hash function
• K = secret key; recommended length is Ú n; if key length is greater than b, the

key is input to the hash function to produce an n-bit key
• K+ = K padded with zeros on the left so that the result is b bits in length
• ipad = 00110110 (36 in hexadecimal) repeated b/8 times
• opad = 01011100 (5C in hexadecimal) repeated b/8 times
• Then HMAC can be expressed as

HMAC
Structure

• We can describe the algorithm as follows.
• 1. Append zeros to the left end of K to create a b-bit string K+

(e.g., if K is of length 160 bits and b = 512, then K will be
appended with 44 zeroes).

• 2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit
block Si.

• 3. Append M to Si.
• 4. Apply H to the stream generated in step 3.
• 5. XOR K+ with opad to produce the b-bit block So.
• 6. Append the hash result from step 4 to So.
• 7. Apply H to the stream generated in step 6 and output the

result.

Security of HMAC

• Depends in some way on the cryptographic
strength of the underlying hash function

• Appeal of HMAC is that its designers have
been able to prove an exact relationship
between the strength of the embedded hash
function and the strength of HMAC

• Generally expressed in terms of the
probability of successful forgery with a given
amount of time spent by the forger and a
given number of message-tag pairs created
with the same key

Cipher Block based MAC(CMAC)

Authenticated Encryption (AE)

• A term used to describe encryption systems that
simultaneously protect confidentiality and
authenticity of communications

• Approaches:
• Hash-then-encrypt: E(K, (M || h))
• MAC-then-encrypt: T = MAC(K1, M), E(K2, [M || T])
• Encrypt-then-MAC: C = E(K2, M), T = MAC(K1, C)
• Encrypt-and-MAC: C = E(K2, M), T = MAC(K1, M)

• Both decryption and verification are
straightforward for each approach

• There are security vulnerabilities with all of these
approaches

