
Chapter 1: Introduction

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 1 / 36

Distributed Computing: Principles, Algorithms, and Systems

Definition

Autonomous processors communicating over a communication network

Some characteristics
I No common physical clock
I No shared memory
I Geographical seperation
I Autonomy and heterogeneity

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 2 / 36

Distributed Computing: Principles, Algorithms, and Systems

Distributed System Model

M memory bank(s)

P

P
P P

P

PP

M
M M

MM

M M

Communication network

(WAN/ LAN)

P processor(s)

Figure 1.1: A distributed system connects processors by a communication network.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 3 / 36

Distributed Computing: Principles, Algorithms, and Systems

Relation between Software Components

protocols

Operating

system

Distributed software

N
et

w
o
rk

 p
ro

to
co

l
st

ac
k

Transport layer

Data link layer

Application layer

(middleware libraries)

Network layer

Distributed application Extent of

distributed

Figure 1.2: Interaction of the software components at each process.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 4 / 36

Distributed Computing: Principles, Algorithms, and Systems

Motivation for Distributed System

Inherently distributed computation

Resource sharing

Access to remote resources

Increased performance/cost ratio

Reliability
I availability, integrity, fault-tolerance

Scalability

Modularity and incremental expandability

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 5 / 36

Vignesh JS
Sticky Note
Money Transfer in Banking

Vignesh JS
Sticky Note
Replicated Datasets in various servers

Vignesh JS
Sticky Note
Super Computers/Central Servers - Those for non - replicable secured data

Vignesh JS
Sticky Note
Recovery from System Failures

Vignesh JS
Sticky Note
The data downloaded from various servers should be correct and crystal clear

Vignesh JS
Sticky Note
Data Should be available 24/7

Vignesh JS
Sticky Note
WAN Connectivity

Vignesh JS
Sticky Note
Heterogeneous processors can be added with same middleware algorithms

Distributed Computing: Principles, Algorithms, and Systems

Parallel Systems

Multiprocessor systems (direct access to shared memory, UMA model)
I Interconnection network - bus, multi-stage sweitch
I E.g., Omega, Butterfly, Clos, Shuffle-exchange networks
I Interconnection generation function, routing function

Multicomputer parallel systems (no direct access to shared memory, NUMA
model)

I bus, ring, mesh (w w/o wraparound), hypercube topologies
I E.g., NYU Ultracomputer, CM* Conneciton Machine, IBM Blue gene

Array processors (colocated, tightly coupled, common system clock)
I Niche market, e.g., DSP applications

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 6 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Sticky Note
Consider first two rows of dennis lab systems .
you cannot communicate between the 3rd system of first row and 2nd system of 3rd row

CSE
Sticky Note
Consider first two rows of dennis lab systems .
you switch between themselves and communicate between the 3rd system of first row and 2nd system of 3rd row

Distributed Computing: Principles, Algorithms, and Systems

UMA vs. NUMA Models

M memory

MP P P

PPP M

M M

MM

M M M M

PP P P

Interconnection network Interconnection network

(a) (b)

P processor

Figure 1.3: Two standard architectures for parallel systems. (a) Uniform memory
access (UMA) multiprocessor system. (b) Non-uniform memory access (NUMA)
multiprocessor. In both architectures, the processors may locally cache data from
memory.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 7 / 36

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Omega, Butterfly Interconnects

3−stage Butterfly network

101

110

111

100

111
110

100

011
010

000

001

P0

P1

P2

P3

P4

P6

P7

101P5

000

001

M0

M1

010

011

100

101

110

111

M2

M3

M4

M5

M6

M7

000

001

010

011

M0

M1

M2

M3

M4

M5

M6

M7

110

111

011
010

000
001

100

101

P0

P1

P2

P3

P4

P5

P6

P7

(a) 3−stage Omega network (n=8, M=4) (b) (n=8, M=4)

Figure 1.4: Interconnection networks for shared memory multiprocessor systems.
(a) Omega network (b) Butterfly network.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 8 / 36

Distributed Computing: Principles, Algorithms, and Systems

Omega Network

n processors, n memory banks

log n stages: with n/2 switches of size 2x2 in each stage

Interconnection function: Output i of a stage connected to input j of next
stage:

j =

{
2i for 0 ≤ i ≤ n/2− 1
2i + 1− n for n/2 ≤ i ≤ n − 1

Routing function: in any stage s at any switch:
to route to dest. j ,
if s + 1th MSB of j = 0 then route on upper wire
else [s + 1th MSB of j = 1] then route on lower wire

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 9 / 36

Distributed Computing: Principles, Algorithms, and Systems

Interconnection Topologies for Multiprocesors

1101

01100100

0000

0001

0010

0111

0011

0101

(b)(a)
processor + memory

1100

1000

1110

1010

1111

1011
1001

Figure 1.5: (a) 2-D Mesh with wraparound (a.k.a. torus) (b) 3-D hypercube

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 10 / 36

Distributed Computing: Principles, Algorithms, and Systems

Flynn’s Taxonomy

(c) MISD

D D D

I I I

I II I

II

C C C C

P P P P P

D D

P

C C

I instruction stream

D

P

Control Unit

Processing Unit

data stream

(a) SIMD (b) MIMD

Figure 1.6: SIMD, MISD, and MIMD modes.

SISD: Single Instruction Stream Single Data Stream (traditional)

SIMD: Single Instruction Stream Multiple Data Stream
I scientific applicaitons, applications on large arrays
I vector processors, systolic arrays, Pentium/SSE, DSP chips

MISD: Multiple Instruciton Stream Single Data Stream
I E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream
I distributed systems, vast majority of parallel systems

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 11 / 36

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Terminology

Coupling
I Interdependency/binding among modules, whether hardware or software (e.g.,

OS, middleware)

Parallelism: T (1)/T (n).
I Function of program and system

Concurrency of a program
I Measures productive CPU time vs. waiting for synchronization operations

Granularity of a program
I Amt. of computation vs. amt. of communication
I Fine-grained program suited for tightly-coupled system

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 12 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Message-passing vs. Shared Memory

Emulating MP over SM:
I Partition shared address space
I Send/Receive emulated by writing/reading from special mailbox per pair of

processes

Emulating SM over MP:
I Model each shared object as a process
I Write to shared object emulated by sending message to owner process for the

object
I Read from shared object emulated by sending query to owner of shared object

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 13 / 36

CSE
Highlight

CSE
Highlight

CSE
Sticky Note
Message Passing over Shared Memory

CSE
Sticky Note
Shared Memory Over Message Passing

Distributed Computing: Principles, Algorithms, and Systems

Classification of Primitives (1)

Synchronous (send/receive)
I Handshake between sender and receiver
I Send completes when Receive completes
I Receive completes when data copied into buffer

Asynchronous (send)
I Control returns to process when data copied out of user-specified buffer

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 14 / 36

CSE
Highlight

CSE
Highlight

CSE
Sticky Note
Mutual acknowledgment on receiving and sending the messages

CSE
Sticky Note
Will be acknowledged on sending the message

Distributed Computing: Principles, Algorithms, and Systems

Classification of Primitives (2)

Blocking (send/receive)
I Control returns to invoking process after processing of primitive (whether sync

or async) completes

Nonblocking (send/receive)
I Control returns to process immediately after invocation
I Send: even before data copied out of user buffer
I Receive: even before data may have arrived from sender

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 15 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Non-blocking Primitive

Send(X, destination, handlek) //handlek is a return parameter
...
...
Wait(handle1, handle2, . . . , handlek , . . . , handlem) //Wait always blocks

Figure 1.7: A nonblocking send primitive. When the Wait call returns, at least
one of its parameters is posted.

Return parameter returns a system-generated handle
I Use later to check for status of completion of call
I Keep checking (loop or periodically) if handle has been posted
I Issue Wait(handle1, handle2, . . .) call with list of handles
I Wait call blocks until one of the stipulated handles is posted

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 16 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Blocking/nonblocking; Synchronous/asynchronous;
send/receive primities

S

Send

The completion of the previously initiated nonblocking operation

duration in which the process issuing send or receive primitive is blocked
 primitive issued

 primitive issuedReceive
Send

(c) blocking async. Send (d) nonblocking async. Send

S

W

R_C

P, S_C

R_CP,

(b) nonblocking sync. Send, nonblocking Receive (a) blocking sync. Send, blocking Receive

P,
S_C

P
R R_C

S_C
processing for completesReceive

Process may issue to check completion of nonblocking operationWait

duration to copy data from or to user buffer

processing for completes

S S_Cprocess i

buffer_i

kernel_i

process j

buffer_j

kernel_j

S W W

W WRR

process i

buffer_i

kernel_i

S S_C
WW

Figure 1.8:Illustration of 4 send and 2 receive primitives

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 17 / 36

Distributed Computing: Principles, Algorithms, and Systems

Asynchronous Executions; Mesage-passing System

internal event send event receive event

P

P

P

P

0

1

2

3

m4

m1 m7

m3 m5

m6m2

Figure 1.9: Asynchronous execution in a message-passing system

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 18 / 36

Distributed Computing: Principles, Algorithms, and Systems

Synchronous Executions: Message-passing System

round 3

P

P

P

P

3

2

0

1

round 1 round 2

Figure 1.10: Synchronous execution in a message-passing system
In any round/step/phase: (send | internal)∗(receive | internal)∗

(1) Sync Execution(int k, n) //k rounds, n processes.
(2) for r = 1 to k do
(3) proc i sends msg to (i + 1) mod n and (i − 1) mod n;
(4) each proc i receives msg from (i + 1) mod n and (i − 1) mod n;
(5) compute app-specific function on received values.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 19 / 36

Distributed Computing: Principles, Algorithms, and Systems

Synchronous vs. Asynchronous Executions (1)

Sync vs async processors; Sync vs async primitives

Sync vs async executions

Async execution
I No processor synchrony, no bound on drift rate of clocks
I Message delays finite but unbounded
I No bound on time for a step at a process

Sync execution
I Processors are synchronized; clock drift rate bounded
I Message delivery occurs in one logical step/round
I Known upper bound on time to execute a step at a process

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 20 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

Synchronous vs. Asynchronous Executions (2)

Difficult to build a truly synchronous system; can simulate this abstraction

Virtual synchrony:
I async execution, processes synchronize as per application requirement;
I execute in rounds/steps

Emulations:
I Async program on sync system: trivial (A is special case of S)
I Sync program on async system: tool called synchronizer

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 21 / 36

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

Distributed Computing: Principles, Algorithms, and Systems

System Emulations

S−>A

Asynchronous
message−passing (AMP)

Synchronous

shared memory (ASM)
Asynchronous Synchronous

shared memory (SSM)

message−passing (SMP)

SM−>MPMP−>SMSM−>MPMP−>SM

A−>S

S−>A

A−>S

Figure 1.11: Sync ↔ async, and shared memory ↔ msg-passing emulations

Assumption: failure-free system

System A emulated by system B:
I If not solvable in B, not solvable in A
I If solvable in A, solvable in B

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 22 / 36

CSE
Sticky Note
Re imitating the function or action of a different computer, software system, etc.

	Distributed Computing: Principles, Algorithms, and Systems

