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Definition

Autonomous processors communicating over a communication network

Some characteristics
I No common physical clock
I No shared memory
I Geographical seperation
I Autonomy and heterogeneity
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Distributed System Model
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Figure 1.1: A distributed system connects processors by a communication network.
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Relation between Software Components
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Figure 1.2: Interaction of the software components at each process.
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Motivation for Distributed System

Inherently distributed computation

Resource sharing

Access to remote resources

Increased performance/cost ratio

Reliability
I availability, integrity, fault-tolerance

Scalability

Modularity and incremental expandability
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Parallel Systems

Multiprocessor systems (direct access to shared memory, UMA model)
I Interconnection network - bus, multi-stage sweitch
I E.g., Omega, Butterfly, Clos, Shuffle-exchange networks
I Interconnection generation function, routing function

Multicomputer parallel systems (no direct access to shared memory, NUMA
model)

I bus, ring, mesh (w w/o wraparound), hypercube topologies
I E.g., NYU Ultracomputer, CM* Conneciton Machine, IBM Blue gene

Array processors (colocated, tightly coupled, common system clock)
I Niche market, e.g., DSP applications
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UMA vs. NUMA Models
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Figure 1.3: Two standard architectures for parallel systems. (a) Uniform memory
access (UMA) multiprocessor system. (b) Non-uniform memory access (NUMA)
multiprocessor. In both architectures, the processors may locally cache data from
memory.
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Omega, Butterfly Interconnects

3−stage Butterfly network
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(a) 3−stage Omega network (n=8, M=4) (b) (n=8, M=4)

Figure 1.4: Interconnection networks for shared memory multiprocessor systems.
(a) Omega network (b) Butterfly network.
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Omega Network

n processors, n memory banks

log n stages: with n/2 switches of size 2x2 in each stage

Interconnection function: Output i of a stage connected to input j of next
stage:

j =

{
2i for 0 ≤ i ≤ n/2− 1
2i + 1− n for n/2 ≤ i ≤ n − 1

Routing function: in any stage s at any switch:
to route to dest. j ,
if s + 1th MSB of j = 0 then route on upper wire
else [s + 1th MSB of j = 1] then route on lower wire
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Interconnection Topologies for Multiprocesors
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Figure 1.5: (a) 2-D Mesh with wraparound (a.k.a. torus) (b) 3-D hypercube
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Flynn’s Taxonomy
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Figure 1.6: SIMD, MISD, and MIMD modes.

SISD: Single Instruction Stream Single Data Stream (traditional)

SIMD: Single Instruction Stream Multiple Data Stream
I scientific applicaitons, applications on large arrays
I vector processors, systolic arrays, Pentium/SSE, DSP chips

MISD: Multiple Instruciton Stream Single Data Stream
I E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream
I distributed systems, vast majority of parallel systems
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Terminology

Coupling
I Interdependency/binding among modules, whether hardware or software (e.g.,

OS, middleware)

Parallelism: T (1)/T (n).
I Function of program and system

Concurrency of a program
I Measures productive CPU time vs. waiting for synchronization operations

Granularity of a program
I Amt. of computation vs. amt. of communication
I Fine-grained program suited for tightly-coupled system
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Message-passing vs. Shared Memory

Emulating MP over SM:
I Partition shared address space
I Send/Receive emulated by writing/reading from special mailbox per pair of

processes

Emulating SM over MP:
I Model each shared object as a process
I Write to shared object emulated by sending message to owner process for the

object
I Read from shared object emulated by sending query to owner of shared object

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 13 / 36

CSE
Highlight

CSE
Highlight

CSE
Sticky Note
Message Passing over Shared Memory

CSE
Sticky Note
Shared Memory Over Message Passing 



Distributed Computing: Principles, Algorithms, and Systems

Classification of Primitives (1)

Synchronous (send/receive)
I Handshake between sender and receiver
I Send completes when Receive completes
I Receive completes when data copied into buffer

Asynchronous (send)
I Control returns to process when data copied out of user-specified buffer
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Classification of Primitives (2)

Blocking (send/receive)
I Control returns to invoking process after processing of primitive (whether sync

or async) completes

Nonblocking (send/receive)
I Control returns to process immediately after invocation
I Send: even before data copied out of user buffer
I Receive: even before data may have arrived from sender
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Non-blocking Primitive

Send(X, destination, handlek) //handlek is a return parameter
...
...
Wait(handle1, handle2, . . . , handlek , . . . , handlem) //Wait always blocks

Figure 1.7: A nonblocking send primitive. When the Wait call returns, at least
one of its parameters is posted.

Return parameter returns a system-generated handle
I Use later to check for status of completion of call
I Keep checking (loop or periodically) if handle has been posted
I Issue Wait(handle1, handle2, . . .) call with list of handles
I Wait call blocks until one of the stipulated handles is posted
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Blocking/nonblocking; Synchronous/asynchronous;
send/receive primities
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Figure 1.8:Illustration of 4 send and 2 receive primitives

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 17 / 36



Distributed Computing: Principles, Algorithms, and Systems

Asynchronous Executions; Mesage-passing System
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Figure 1.9: Asynchronous execution in a message-passing system
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Synchronous Executions: Message-passing System
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Figure 1.10: Synchronous execution in a message-passing system
In any round/step/phase: (send | internal)∗(receive | internal)∗

(1) Sync Execution(int k, n) //k rounds, n processes.
(2) for r = 1 to k do
(3) proc i sends msg to (i + 1) mod n and (i − 1) mod n;
(4) each proc i receives msg from (i + 1) mod n and (i − 1) mod n;
(5) compute app-specific function on received values.
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Synchronous vs. Asynchronous Executions (1)

Sync vs async processors; Sync vs async primitives

Sync vs async executions

Async execution
I No processor synchrony, no bound on drift rate of clocks
I Message delays finite but unbounded
I No bound on time for a step at a process

Sync execution
I Processors are synchronized; clock drift rate bounded
I Message delivery occurs in one logical step/round
I Known upper bound on time to execute a step at a process
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Synchronous vs. Asynchronous Executions (2)

Difficult to build a truly synchronous system; can simulate this abstraction

Virtual synchrony:
I async execution, processes synchronize as per application requirement;
I execute in rounds/steps

Emulations:
I Async program on sync system: trivial (A is special case of S)
I Sync program on async system: tool called synchronizer
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System Emulations
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Figure 1.11: Sync ↔ async, and shared memory ↔ msg-passing emulations

Assumption: failure-free system

System A emulated by system B:
I If not solvable in B, not solvable in A
I If solvable in A, solvable in B
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