Double DES \& Triple DES

Prepared by : Sharma Hemant
hemantbeast@gmail.com

Contents

> DES Overview
> Double DES
$>$ Triple DES with 2-key encryption
$>$ Triple DES with 3-key encryption

DES Overview

DES Overview

Figure 3.6 Single Round of DES Algorithm

Double DES

- In this approach, we use two instances of DES ciphers for encryption and two instances of reverse ciphers for decryption.
- Each instances use a different key.
- The size of the key is doubled.
- There are issues of reduction to single stage.
- However, double DES is vulnerable to meet-in-the-middle attack.

Double DES

- Given a plaintext P and two encryption keys K_{1} and K_{2}, a cipher text can be generated as,

$$
\mathrm{C}=\mathrm{E}\left(K_{2}, \mathrm{E}\left(K_{1}, \mathrm{P}\right)\right)
$$

- Decryption requires that the keys be applied in reverse order,

$$
\mathrm{P}=\mathrm{D}\left(K_{1}, \mathrm{D}\left(K_{2}, \mathrm{C}\right)\right)
$$

(a) Double encryption

Meet-in-the-middle attack

Meet-in-the-middle attack

- The middle text, the text created by the first encryption or the first decryption, M, should be same

$$
\mathrm{M}=E_{K 1}(\mathrm{P}) \quad \mathrm{M}=D_{K 2}(\mathrm{C})
$$

- Encrypt P using all possible values of K_{1} and records all values obtained for M.
- Decrypt C using all possible values of K_{2} and records all values obtained for M.
- Create two tables sorted by M values.
- Now compares the values for M until we finds those pairs of $K_{1} \& K_{2}$ for which the value of M is same in both tables.

Meet-in-the-middle attack

$$
\mathrm{M}=\mathrm{E}_{k_{1}}(\mathrm{P})
$$

- Instead of using 2^{112} key search tests, we have to use 2^{56} key search tests two times.
- Moving from a Single DES to Double DES, we have to increased the strength from 2^{56} to 2^{57}.

Triple DES with 2-key

- Use three stages of DES for encryption and decryption.
- The $1^{\text {st }}, 3^{\text {rd }}$ stage use K_{1} key and $2^{\text {nd }}$ stage use K_{2} key.
- To make triple DES compatible with single DES, the middle stage uses decryption in the encryption side and encryption in the decryption side.
- It's much stronger than double DES.

(b) Triple encryption

Triple DES with 2-key

- The function follows an encrypt-decrypt-encrypt (EDE) sequence.

$$
\begin{aligned}
& \mathrm{C}=\mathrm{E}\left(K_{1}, \mathrm{D}\left(K_{2}, \mathrm{E}\left(K_{1}, \mathrm{P}\right)\right)\right) \\
& \mathrm{P}=\mathrm{D}\left(K_{1}, \mathrm{E}\left(K_{2}, \mathrm{D}\left(K_{1}, \mathrm{C}\right)\right)\right)
\end{aligned}
$$

- By the use of triple DES with 2-key encryption, it raises the cost of meet-in-the-middle attack to 2^{112}.
- It has the drawback of requiring a key length of $56 \times 3=168$ bits which may be somewhat unwieldy.

Triple DES with 3-key

- Although the attacks just described appear impractical, anyone using twokey 3DES may feel some concern.
- Thus, many researches now feel that 3-key 3DES is the preferred alternative.
- Use three stages of DES for encryption and decryption with three different keys.
- 3-key 3DES has an effective key length of 168 bits and is defined as,

$$
\begin{aligned}
& \mathrm{C}=\mathrm{E}\left(K_{3}, \mathrm{D}\left(K_{2}, \mathrm{E}\left(K_{1}, \mathrm{P}\right)\right)\right) \\
& \mathrm{P}=\mathrm{D}\left(K_{1}, \mathrm{E}\left(K_{2}, \mathrm{D}\left(K_{3}, \mathrm{C}\right)\right)\right)
\end{aligned}
$$

Triple DES with 3-key

Thank you

