DATABASE DESIGN AND
MANAGEMENT LAB MANUAL

[RECORD NOTE BOOK]

Name of the Student

Subject Title / Code

lsisreviving@gmail.com
Typewritten text
DATABASE DESIGN AND
MANAGEMENT LAB MANUAL

INDEX

Ex.No.

Date

Title of the experiment

Page.No.

Staff Initial

Exp:1 Database Development Lifecycle of Banking Management
Date:

Aim:

Steps:

Database Planning : To plan the effective development of banking, the efficient way
to use it by the users

System Definition: The system definition is done to manage the scope and the range
of boundaries. A bank collects money, cheques, bills and drafts. It accepts deposits
from the public & lends loan to those who are in need of it.

Requirements Collection And Analysis :

1) The XYZ bank can have many automated teller machines(ATMs), and the
new system shall provide functionally on all ATMs.
2) The bank performs 3 types of functions;
a) Withdrawal of funds
b) Query of account balance
¢) Transfer of funds from one bank account to another in the same bank
3) The ATM card must be authorized and issues by the
bank.
4) The system shall allow the customer to enter the Correct PIN in no more
three attempts .The failure this will lead to confiscation of the ATM card
5) The banking system also identifies that whether there is sufficient amount in
the bank before transaction
6) The customer records , account records and debit card records will all be
maintained at the server and shall not be the responsibility of the system
7) The system shall be linked with the bank server through communication
systems, which are beyond the scope of the current system. It is assumed that
this facility is always available.

Database Design: The database is designed in such a way that it contains the details
of the account complaints, customer, interest, loan and transactions.

Selection of DBMS: The DBMS must be selected for the database.

Prototyping: We must give a prototyping system of our banking management system.

Implementation: The implementation of our idea must be done.

Data conversion and loading: Converting the existing application to run the new
database.

Operational Maintenance: Implementing and monitoring the system.

Class Diagram:

Admin
Withdraw
— #id: int
#id: int + name: string
+ amount: string + age: string
+ date: string + contactnum: string
+ reciept: string - username: string
+ update() - password: string
+ create()
+ update()
T ’ ti L l
ransaction Bank Users Employee
#id: int - - otri
+ detalls: string 1 1 atmnumber: string + credentials: string
+ date; string # enableUser() + add()
S U0 &— # disableUser() + update()
? Credit
Debit
+colletarals: string
+ information: string + add()
+ processDebit() + update()

Use Case Diagram:

Banking System Use Cage Diagram

open_account as
% A)(' Dispenser

I

|__—w+_withdrasy_cash

Custormer — | //

cleat_checks rd Clerk

% _-Ican_amlicaﬁun = j\
Manager — Loan Officer

SCOPE OF BANKING MANAGEMENT:

It can be used by bank employees and customer depending on the bank policies.
It can be used by several employees at the same time. It can be accessed using
any general web browser with geographical interface

Result:

EXP: 2 ER- and EER-to-Relational Mapping
Date:

Aim:

Steps:

> ER-to-Relational mapping algorithm
« step 1. mapping of regular entity types
« step 2: napping of weak entity types
» step 3: mapping of binary 1:1 relation types
« step 4. mapping of binary 1:N relationship types
« step 5: mapping of binary M:N relationship types
- step 6: mapping of multi valued attributes
- step 7: mapping of N-ary relationship types

> mapping EER model constructs to relations
» step 8: options for mapping specialization or generalization
. step 9: mapping of union types (categories)

ER conceptual schema:

DI

Resulting relational database schema:

EMPLOYEE

| Fname l Minit I Lnamel Ssn I Bdate I Address I Sex I Salary I Super_ssn| Dno I

DEPARTMENT

Ml*

I

l Dname 1 Dnumber

I Mgr_ssnl Mgr_start_datel

A“

DEPT_LOCATIONS

Dnumber | DI ion
| Dnumber | Diocation |
1

PROJECT
l Pname] Pnumber] Plocation I Dnum
& [
WORKS_ON
| Essn | Pno | Hours |
[[E—
DEPENDENT

I Essn | Dependent_name [Sex l Bdate l Relationship
1

Figure 7.2
Result of mapping the COMPANY ER
schema into a relational database schema.

Together of relational and conceptual schema:

MANAGES >

EMPLOYEE

FNAME

, v

LNAME SN BOATE

vi
DEPARTMENT

ONAME

v

»

MORSTARTDATE

DEPT_LOCATIONS
I osuveen DLOCATION
| &7 SUPERVISON I N \ e) PROJECT

PNAME PNUMBER PLOCATION ONUM

DEPENDENTS OF > N
WORKS_ON

ESSN PNO HOURS

DEPENDENT

DEPENDENT NAME SEX BDATE

Fotacrel ©

Step 1:

e Mapping of regular entity types

e For each regular entity type E in the ER schema, create a relation R that includes
all the simple attributes of E.

¢ Include only the simple component attributes of a composite attribute. Choose
one of the key attributes of E as primary key for R.

o |f the chosen key of E is composite, the set of simple attributes that form it will
together form the primary key of R .

e e.0., EMPLOYEE, DEPARTMENT, PROJECT

Step 2:

e Mapping of weak entity types.
e For each weak entity type W in the ER schema with owner entity type E, create a
relation R and include all simple attributes of W as attributes of R .

Include as foreign key attributes of R the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s). The primary key of R is
the combination of the primary key(s) of the owner(s) and the partial key of the
weak entity type W, if any.

If there is a weak entity type E2 whose owner is also a weak entity type E1, then
E1 should be mapped before E2 to determine its primary key first.

e.g., DEPENDENT

Step 3:

Mapping of binary 1:1 relationship types
For each binary 1:1 relationship type R in the ER schema, identify the relations S
and T that correspond to the entity types participating in R
Foreign key approach
» choose one of the relations, S, and include as a foreign key in S the primary
key of T
> include all the simple attributes of R as attributes of S
Merged relation option
» merge the two entity types and the relationship into a single relation
Relationship relation option
> set up a third relation R for the purpose of cross-referencing the primary keys
ofSand T
MANAGES -> DEPARTMENT.MGRSSN,DEPARTMENT.MGRSTARTDATE

Step 4.

Mapping of binary 1:N relationship types

For each binary 1:N relationship type R, identify the relation S that represents the
participating entity type at the N-side of the relationship type

Include as foreign key in S the primary key of the relation T that represents the
other entity type participating in R

Include any simple attributes of the 1:N relationship type as attributes of S

e.g., WORKS_FOR: S =EMPLOYEE, T = DEPARTMENT, DNO: the primary
key of T

Step 5:

Mapping of binary M:N relationship types

For each binary M:N relationship type R, create a new relation S to represent R
Include as foreign key attributes in S the primary keys of the relations that
represent the participating entity types

e Their combination will form the primary key of S
¢ Include any simple attributes of R as attributes of S
e e.0., WORKS ON: S=WORKS ON

Step 6:

Mapping of multi valued attributes

e For each multi valued attribute A, create a new relation R

¢ R will include an attribute corresponding to A, plus the primary key attribute K -
as a foreign key in R — of the relation that represents the entity type or
relationship type that has A as an attribute

e The primary key of R is the combination of A and K

o |f the multi valued attribute is composite, include its simple components

e e.g., Locations: A=DLOCATION, R = DEPT_LOCATIONS, K =DNUMBER.

Step 7:

e Mapping of N-ary relationship types

e [For each n-ary relationship type R, where n > 2, create a new relation S to
represent R

¢ Include as foreign key attributes in S the primary keys of the relations that
represent the participating entity types

¢ Include any simple attributes of R as attributes of S

e The primary key of S is usually a combination of all the foreign keys that
reference the relations representing the participating entity types e.g., SUPPL

SNAME
LA Fme /TN PROECT
\—/ :\()uanbty) Proame
T AP = e ol PROINAME
‘ SUPPUER _</ SuPRLY > { PROVECT
‘«.\ P //" PART
- [paAmi0
) N
(PaiNo)
N,
ALl SUPRLY

SNAME PROJNAME PARTNO QUANTITY

OTEITHL INTEEACTIONS LAG

[

Step 8:

e options for mapping specialization or generalization

e convert each specialization with m subclasses {S1, S2, ..., Sm} and superclass C,
where the attributes of C are {k, al, ..., an} and k is the key, into relation
schemas using one of the following options

Option 8A:

e Multiple relations-super class and subclasses

e Create a relation L for C with attributes Attrs(L) = {k, al, ..., an} and PK(L) =k

e Create a relation Li for each subclass Si, with the attributes Attrs(Li) = {k} U
{attributes of Si} and PK(Li) =k

e Works for any specialization (total or partial, disjoint or overlapping)

EMPLOYEE D
SON | FName [Mint | LName | BithDate | Address JobTypel e o (R (s
SECRETARY TECHNICIAN ENGINEER ki
SSN | TypingSpeed SSN TGfade\ {S_Sﬁ EngTwe] KbTye
“Socrary’ [\ Engnoe’
!M‘;M “Tumum. Y(V?‘;) ’.WI]W“; :
secrerary | [TecHnoan | [ENGINEER |
Option 8B:

e Multiple relations-subclass relations only

e Create a relation Li for each subclass Si, with the attributes Attrs(Li) = {attributes
of Si} U{k, al, ..., an} and PK(L1) =k

e Only works for a specialization whose subclasses are total

CAR
| Vehicleld] LicensePlateNo] Price [MaxSpeed] NoOfPassengers]

TRUCK
| Vehicleld [LicensePlateNo | Price | NoOfAxles] |

®) ~ - ™ o

Yehckld _ esed) R ~cemieco—
o o " | >
| VEHICLE
S ——— \ — ™ = s
 Maxosed > =4 3 / _~(Tonnage)
| CAR | TRUCK |~

Option 8C:

¢ single relation with one type attribute

e create a single relation L with attributes Attrs(L) = {k, al, ..., an} U {attributes
of S1} U... U{attributes of Sm} U{t} and PK(L) =k

o the attribute t is called a type attribute that indicates the subclass to which each
tuple belongs

e works only for a specialization whose subclasses are disjoint

EMPLOYEE
SSN | FName | Minit | LName | BithDate | Address | JobType | TypingSpeed | TGrade

Job Type
“Secretary’ T “Engnee’
Torged > / o |(Toas Erglye
e - Tochncin g
[secreTary | [TECHNCAN ENGINEER

Option 8D:

¢ single relation with multiple type attributes
e create a single relation schema L with attributes Attrs(L) = {k, al, ..., an} U
{attributes of S1} U... U{attributes of Sm} U{tl, ..., tm} and PK(L) =k

e each ti is a Boolean type attribute indicating whether a tuple belongs to subclass
Si

e works for a specialization whose subclasses are overlapping

PART
PatNo | Description | MFlag | DrawingNo | ManufactureDate | BatchNo | PFlag | SupplierName | ListPrice

COMCTY
PART
MV\AI:?M!‘(\!’?;_ S.pphetiame
G PAWACD ; ™
MANUFACTURED _PART PURCHASED_PART

Mapping of shared subclasses

e shared subclass: a subclass of several superclasses, indicating multiple
inheritance

e apply any of the options in step 8 to a shared subclass

r— — —~ PERSON
o e Ve Jﬂmmwm
| EMPLOYEE
2 [sN | saary [(EmpioyeeType)| Positon | Rank [PementTime | RaRag | TAFiag | Proect|
_/
) ALUMNUS ALUMNUS_DEGREES
— | SN | SSN | Year | Degres |
[ewrovee | [T [snoewt |
— STUDENT)) , .
) DD J SSN | MajorDept | GradFiag | UndergradFlag | DegreeProgram | Class [(sudassisiag)|
TN oo s o2 S——~

Mapping of categories

Cateqory:

e A subclass of the union of two or more super classes that can have different keys
because they can be of different entity types

Step 9:

e mapping of categories
e mapping a category whose defining super classes have different keys
» specify a new key attribute, called a surrogate key
> include the surrogate key attribute as foreign key in each relation
corresponding to a super class of the category
> e.g., OWNER category
e mapping a category whose super classes have the same key
» no need for a surrogate key
> e.g., REGISTERED_VEHICLE

PERSON e
SSN | DriverlicenseNo | Name | Address Lo |
O o) (Chdsems
BANK s>\ |/ XL
BName | BAddress | Ownerld) L_PERSON | i COMPANY |
COMPANY
CName | CAddress | Ownerld O
|
OWNER = |
OWNER |
Ownerld st
REGISTERED_VEHICLE ol /=
Vehicleld | LicensePlateNumber ComsS
N
Lo T
Vehiceld | CStyle | CMake | CModel
| REGISTERED VEHCLE |
Vehicleld | TMake | TModel | Tonnage | TYear 7N .
e — ~—~ \U) (TYear)
S T N T
OWNS :é_h:e‘/\ \?E/.' /// \ R //’\:\nm\)
Ownerld | Vehideld | PurchaseDate | LienOrReguiar o— D\ N\ | LA —Com)
s TRUCK | -
\VMU‘)" h w/vm:@'/\,

Result:

Exp: 3 PRACTICING DDL COMMANDS
Date:
Aim :

Procedure :

1) Create a table called employeel with the following structure.

Name Type
emp_no integer

e _name \archar(30)
desig \archar(30)
age integer
salary integer

. Add a column commission with domain to the Employee table.
. Insert any five records into the table.
. Update the column details of design.
. Rename the column of employeel table using alter command.
. Truncate the table using truncate command
Drop the table using drop command.

0O o O T D

. Create aview in the name of emp_view and
Display the contents of the table.

Data Definition Lanquage (DDL) Commands :

Table Creation :

(uery Edtor - Query Histor

L create table enployeel| em_no integer , e nane varchar (%), desig varchar(20) ,age nteger , salary integer |;

Output :

Data COutput Explain Motifications Messages

CREATE TABLE

Qu=ryw returned successTully Gn 30 msec.

Alter Table :

Query Editor Query History

1 ALTER TABLE employeel add place varchar(30);

Output :-

Data Output Explain Notifications Messages

ALTER TAEBLE

Query returned successfully in 99 msec.

Truncate Table :

Query Editor Query History

1 truncate table employeel;

Output :

Data Output Explain Messages Notifications

TRUNMCATE TABLE

Query returned successfully in 28 msec.

Drop Table :

Query Editor Query History

u | drop table employveel ;

Output :

Data Quiput Explain Messages Notifications

DROP TABLE

Query returned successfully in 43 msec.

Views :

View Creation :

Query Edfor- QueryHistory

L create view enp_view as select enp_no, e_nane, desig ,salary from enployeel:

!

3 select + from enp_view;

OUTPUT :-

Data Output

emp_no

4 integer
1

[5 I SO ' T L

1001
1002
1003
1004
1005

Explain

e_name
character varying (30)

aakash
balaji
chris
dey

elon musk

Motifications

Messages

desig _ & ;alary &
character varying (20) integer
Manager 32000
developer 23000
designer 30000
tester 40000

general manager 100000

Exp: 4 PRACTICING DML COMMANDS
Date:
Aim :

Procedure :-

a. Insert any five records into the table.

b. Add a column to the table named place to the table using alter add command
C. Update the column details of place.

d. Delete a record from the table where the emp_no=1001.

Data Manipulation Language (DML) Commands :
Inserting Data To The Table :

Query Editor Query History

insert into employeel values(1001, 'aakash', 'manager',36,35000);
insert into employeel values(1002, 'balaji','developer',29,25000);
insert into employeel values(1003,'chris', 'designer',31,30000);
insert into employeel values(1004, 'dev','tester',31,40000);

insert into employeel values(1005, 'elon musk','general manager',40,100000);

[E T == T B W e R N R -

select = from employeel;

Qutput :

Data Quiput Explain Notifications Messages

empfo o ename

4 integer character varying (30)

1 1007 aakash

2 1002 balaji

3 1003 chris

4 1004 dev

3 1005 elon musk

Updating Values In The Table :

Query Editor Query History

L I B W B S NI R I

update employeel set
update employeel set
update employeel set
update employeel set
update employeel set

" g;:gﬁter varying (20) - ?ng’:zuger - isnitgr:r "
manager 30 35000
developer 29 25000
designer # 30000
tester £} 40000
general manager 40 100000

place="Tamil nadu' where emp_no=1801;
place="Delhi' where emp_no=1802;
place="Karnataka' where emp_no=1083;
place="Kerala' where emp_no=1804;
place="Tamil nadu' where emp_no=1805;

select = from employeel;

Output :

Data Output Explain Notifications Messages

gmp_nn a e_name _ a desig _ a gge & ;alary a place _
4 integer character varying (30) character varying (20) integer integer character varying (30)
1 1007 aakash manager N 33000 Tamil nadu
2 1002 balaji developer 29 25000 Delhi
3 1003 chris designer 3 30000 Karnataka
< 1004 dev tester N 40000 HKerala
] 1005 elon musk general manager a0 100000 Tamil nadu

Deleting A Record From The Trable :

Query Editor Query History

1 delete from employeel where emp_no=1001;

OUTPUT :

Data Output Explain Messages Notifications

DELETE 1

Query returned successfully in 24 msec.

Exp:5 TRIGGERS AND STORED PROCEDURES
Date:

Aim :

Constraints And Security Using Triggers :

Procedure :

e Create an table in the name of price-list with the following columns

COLUMN NAME DATA TYPE
isbn integer

title varchar(50)
item_price numeric
no_copies integer

total price numeric

e Create a function calc_total _price() to calculate the total price by
multiplying item_price and no_copies using create or replace function
command

e Now create a Trigger to execute the procedure calc_total price().

e Then insert the values into the table.

e View the table using select query

Here following two points are important and should be noted carefully:

e OLD and NEW references are not available for table level triggers, rather you can
use them for record level triggers.
e |If you want to query the table in the same trigger, then you should use the AFTER
keyword, because triggers can query the table or change it again only after the
initial changes are applied and the table is back in a consistent state.
e Above trigger has been written in such a way that it will fire before any DELETE
or INSERT or UPDATE operation on the table, but you can write your trigger on
a single or multiple operations, for example BEFORE DELETE, which will firg
whenever a record will be deleted using DELETE operation on the table.

uer

Query Editor Query History

19
20 create or replace function calc_total_price()
21 returns trigger
22 as $bodys$
23 declare
24 total numeric;
25 begin
26 total = new.item_price * new.no_copies;
27 new.total_price = total;
28 return new;
29 end;
30 $body$ language plpgsql; T
31
QUTPUT :-

Data Output Messages Explain Notifications

CREATE FUNCTION

Query returned successfully in 218 msec.

uery :

Query Editor Query History

S

32

33 create trigger calc_total_insert

34 before dinsert

35 on book

36 for each row

37 execute procedure calc_total_price();
38

Qutput :

Data Output Messages Explain Notifications

CREATE TRIGGER

Query returned successfully in 212 msec.

uer

Query Editor Query History

1 create table book (

2 isbn int,

3 title varchar(50) not null,

4 itemprice numeric(6,2) not null,
5 no_copies int default 10,

6 total_price numeric(8,2),
% primary key(isbn)

8);

9

10 insert into book values (101, 'Database Management Systems', 450.5, 5);
11 dinsert into book values (102, 'Structured Query Language', 350);
12

13 select * from book;

Qutput :
Data Output Messages Explain Notifications

isbn , fitle item_price no_copies , total price
4 [PK]integer ™ character varying (50) numeric (6,2) ~ integer numeric (8,2)
1 101 Database Management Systems 450.50 5 2252.50
2 102 Structured Query Language 350.00 10 3500.00

Stored Procedures / Functions :

Definition :

A stored procedure is a prepared SQL code that you can save, so the code can be
reused over and over again. So if you have an SQL query that you write over and over
again, save it as a stored procedure, and then just call it to execute it.

Procedure :

e Create a table in the name of sum with the following columns:

COLUMN NAME DATA TYPE
p_numl numeric
p_num2 numeric
p_sum numeric

e Create a procedure testing_procedure() to calculate the p_sum by adding the
p_numl and p_num2 using create or replace procedures() statement.
e Call the procedures with the values using the call procedure_name() query

QUERY :

Query Editor Query History

5
b
7 == INOUT Input + OQutput
8

9 CREATE OR REPLACE PROCEDURE public.testing_procedure(p_numl IN numeric,p_num2 IN numeric, p_sum INOUT numeric)

10 LANGUAGE 'plpgsql'

11 AS $80DYS

12 DECLARE

13v BEGIN

14 p_sum := p_numl + p_num2;
15 END;

16 $BODYS;

-= QUT Only Output, only OUT is not allowed in Stored Procedure in PostgreSQL

Qutput :

Data Output Explain Messages Notifications

CREATE PROCEDURE

Query returned successfully in 140 msec.

17

18 CALL public.testing_procedure(13,15,null);
19

Data Output Explain Messages Notifications

p_sum
4 numeric

1 28

Result :

Exp: 6 Database Design Using Normalization Bottom-Up Approach

Date:

Aim:

Normalization:

It is the processes of reducing the redundancy of data in the table and also
improving the data integrity. So why is this required? Without Normalization in
SQL, we may face many issues such as.

Insertion anomaly: It occurs when we cannot insert data to the table without the
presence of another attribute.

Update anomaly: It is a data inconsistency that results from data redundancy
and a partial update of data.

Deletion _Anomaly: It occurs when certain attributes are lost because of the
deletion of other attributes.

Normalization entails organizing the columns and tables of a database to ensure
that their dependencies are properly enforced by database integrity constraints.

It usually divides a large table into smaller ones, so it is more efficient. In 1970
the First Normal Form was defined by Edgar F Codd and eventually, other
Normal Forms were defined.

Normalization in SQL will enhance the distribution of data. Now let’s
understand each and every Normal Form with examples.

https://en.wikipedia.org/wiki/Database_normalization
https://www.edureka.co/blog/what-is-mysql/

1st Normal Form (1NF)

¢ In this Normal Form, we tackle the problem of atomicity. Here atomicity means
values in the table should not be further divided. In simple terms, a single cell
cannot hold multiple values. If a table contains a composite or multi-valued

attribute, it violates the First Normal Form.

Employee ID Employee Name | Phone Number Salary
1EDUO01 Alex +91 8553278282 60,131
1EDUQ01 Alex +91 9876543210 60,131
1EDU002 Barry +91 9876512340 48,302
1EDUO03 Clair +91 9812763405 22,900
1EDUQ04 David +91 9876543120 81,518
1EDU004 Sriram +91 7448702556 90,000

In the above table, we can clearly see that the Phone Number column has two
values. Thus it violated the 1st NF. Now if we apply the 1st NF to the above

table we get the below table as the result.

Employee ID Employee Name | Phone Number Salary
1EDUQO1 Alex +91 8553278282 60,131
1EDUOCO1 Alex +91 9876543210 60,131
1EDU002 Barry +91 9876512340 48,302
1EDUQ03 Clair +91 9812763405 22,900
1EDUQ04 David +91 9876543120 81,518
1EDUQ04 Sriram +91 7448702556 90,000

e We have achieved atomicity and also each and every column have unique

values.

2nd Normal Form (2NF)

e The first condition in the 2nd NF is that the table has to be in 1st NF. The table
also should not contain partial dependency. Here partial dependency means the
proper subset of candidate key determines a non-prime attribute.

EMPLOYEE ID DEPARTMENT ID OFFICE LOCATION
1EDU001 ED-T1 Pune
1EDU002 ED-S2 Bengaluru
1EDU003 ED-M1 Delhi
1EDU004 ED-T3 Mumbai

e This table has a composite primary key Employee ID, Department ID. The
non-key attribute is Office Location. In this case, Office Location only depends
on Department ID, which is only part of the primary key.

e Therefore, this table does not satisfy the second Normal Form. To bring this
table to Second Normal Form, we need to break the table into two parts.

EMPLOYEE ID DEPARTMENT ID
1EDU001 ED-T1
1EDU002 ED-S2
1EDU003 ED-M1
1EDU004 ED-T3

https://www.edureka.co/blog/primary-key-in-sql/

DEPARTMENT ID OFFICE
LOCATION
ED-T1 Pune
ED-S2 Bengaluru
ED-M1 Delhi
ED-T3 Mumbai

In the table, the column Office Location is fully dependent on the primary key of
that table, which is Department ID.

3rd Normal Form (3NF)

The table has to be in 2NF before proceeding to 3NF. The other condition is
there should be no transitive dependency for non-prime attributes.

That means non-prime attributes (which doesn’t form a candidate key) should
not be dependent on other non-prime attributes in a given table.

So a transitive dependency is a functional dependency in which X — Z (X
determines Z) indirectly, by virtue of X - Yand Y — Z.

STUDENT ID STUDENT SUBJECT ID SUBJECT ADDRESS
NAME
1DT15ENGO1 Alex 15CS11 SQL Goa
1DT15ENG02 Barry 15CS13 JAVA Bengaluru
1DT15ENGO03 Clair 15CS12 C++ Delhi
1DT15ENG04 David 15CS13 JAVA Kochi
In the above table, Student ID determines Subject ID, and Subject

ID determines Subject.

Therefore, Student ID determines Subject via Subject ID. This implies that we
have a transitive functional dependency, and this structure does not satisfy the
third normal form.

STUDENT STUDENT SUBJECT ADDRESS
NAME ID
1DT15ENGO01 Alex 15Cs11 Goa
1DT15ENG02 Barry 15CS13 Bengaluru
1DT15ENGO3 Clair 15CS12 Delhi
1DT15ENG04 David 15CS13 Kochi
SUBJECT ID SUBJECT

15Cs11 SQL

15CS13 JAVA

15CS12 C++

15CS13 JAVA

The above tables all the non-key attributes are now fully functional dependent
only on the primary key.

In the first table, columns Student Name, Subject 1D and Address are only
dependent on Student ID. In the second table, Subjectis only dependent
on Subject ID.

Boyce Codd Normal Form (BCNF)

This is also known as 3.5 NF. It’s the higher version 3NF and was developed by
Raymond F. Boyce and Edgar F. Codd to address certain types of anomalies
which were not dealt with 3NF.

The table has to satisfy 3rd Normal Form.

In BCNF if every functional dependency A — B, then A has to be the Super
Key of that particular table.

STUDENT ID SUBJECT PROFESSOR
1DT15ENGO1 SQL Prof. Mishra
1DT15ENGO02 JAVA Prof. Anand
1DT15ENGO02 C++ Prof. Kanthi
1DT15ENGO03 JAVA Prof. Anand
1DT15ENG04 DBMS Prof. Lokesh

One student can enrol for multiple subjects.

There can be multiple professors teaching one subject .

And, for each subject, a professor is assigned to the student.

In the table Student ID, and Subject form the primary key, which means
the Subject column is aprime attribute. But, there is one more
dependency, Professor — Subject.

And while Subject is a prime attribute, Professor is a non-prime attribute,
which is not allowed by BCNF.

Dividing the table into two parts. One table will hold Student ID which already
exists and newly created column Professor ID.

STUDENT ID PROFESSOR ID

1DT15ENGO1

1DTPFO1

1DT15ENG02

1DTPF02

1DT15ENG02

1DTPFO3

And in the second table, we will have the columns Professor
ID, Professor and Subject.

PROFESSOR ID PROFESSOR SUBJECT
1DTPFO1 Prof. Mishra SQL
1DTPFO1 Prof. Anand JAVA
1DTPFO1 Prof. Kanthi C++

By this we satisfiying the Boyce Codd Normal Form.

Bottom —up approach:

Normalisation is a bottom-up approach which starts with a collection of
attributes and organises them into well-structured relations which are free from
redundant data.

BCNF: Boyce-Codd Normal Form

Result:

Exp:7: Develop A Database ApplicationUsing IDE/RAD Tools
Date:

2>
3

Procedure:

Open you Microsoft Visual Studio 2010, 2012 or higher, or just your
Microsoft Visual Basic .Net.

Create a new project (select File and New Project).For visual studio user:
(select Visual Basic then Windows FormApplication).

Here is the sample form layout or design. Feel free to design your form.We
need to add the following controls:

> 2 labels
> 2 textboxes
» 2 buttons
» 1 checkbox.

The program will first validate the input of the user, the user must enter a
username and password or else a message will appear that will notify theuser
that username and password field is required.

The program will then match or compare the user input to the criteria of the
program. The username must be admin and password must also be admin
which means that the username and password combination must beadmin or
else a message will prompt you that your username and password is
incorrect.

To clear the username and password field, kindly double click the Reset
button and paste the code below.

TextBox1.Clear()

TextBox2.Clear()
Additional feature of this program is to allow the user to view or to makeits
password visible or in simplest explanation is to view what you are typing in the
password field. Kindly double click the Show password checkbox and paste the
line of codes below.

Program:

If TextBox1.Text ="" Then
MessageBox.Show(*'Please enter username")
TextBox1.Focus()

Exit Sub

Elself TextBox2.Text ="" Then
MessageBox.Show(*'Please enter password")
TextBox2.Focus()

Exit Sub

End If

If TextBox1.Text = "admin" And TextBox2.Text = "admin" Then
MessageBox.Show("welcome admin")

Else

MessageBox.Show(*incorrect username or password")
End If

If CheckBox1.Checked = True Then

TextBox2.PasswordChar =
Else
TextBox2.PasswordChar = "*"
End If

o webgeekresources.com | inettutor.com ||| B |]

Isemame

Password

Show password

oK || Reset

&

o' webgeekresources.com | inettutor.com

[Isemame

admin

Password

admin
Show password

= | B 28

welcome admin

| oK || Reset

Result:

Exp:8 Database design using EER to- ODB mapping/ UML class diagrams
Date:

Aim:

Procedure:
Mapping an EER Schema to an ODB Schema

o It is relatively straightforward to design the type declarations of object classes for an
ODBMS from an EER schema that contains neither categories nor n ary relationships
with n > 2,

e However, the operations of classes are not specified in the EER diagram and must be
added to the class declarations after the structural mapping is completed. The outline
of the mapping from EER to ODL is as follows:

Step 1.

e Create an ODL class for each EER entity type or subclass. The type of the ODL
class should include all the attributes of the EER class.

e Multivalued attributes are typically declared by using the set, bag, or list
constructors. If the values of the multivalued attribute for an object should be
ordered, the list constructor is chosen; if duplicates are allowed, the bag constructor
should be chosen; otherwise, the set constructor is chosen.

e Composite attributes are mapped into a tuple constructor (by using a struct
declaration in ODL).

Step 2.

e Add relationship properties or reference attributes for each binary relationship into
the ODL classes that participate in the relationship. These may be created in one or
both directions.

o If a binary relationship is represented by references in both directions, declare the
references to be relationship properties that are inverses of one another, if such a
facility exists.

e |f a binary relationship is represented by a reference in only one direction, declare
the reference to be an attribute in the referencing class whose type is the referenced
class name.

e Depending on the cardinality ratio of the binary relationship, the relationship
properties or reference attributes may be single-valued or collection types. They will
be single valued for binary relationships in the 1:1 or N:1 directions

Step 3.

¢ Include appropriate operations for each class. These are not available from the EER
schema and must be added to the database design by referring to the original
requirements.

e A constructor method should include program code that checks any constraints that
must hold when a new object is created.

e A destructor method should check any constraints that may be violated when an
object is deleted.

Step 4.
e An ODL class that corresponds to a subclass in the EER schema inherits the type
and methods of its super class in the ODL schema.
Step 5.

e Weak entity types can be mapped in the same way as regular entity types. An
alternative mapping is possible for weak entity types that do not participate in any
relationships except their identifying relationship

e these can be mapped as though they were composite multivalued attributes of the
owner entity type, by using the set < struct < ... >> or list < struct < ... >>
constructors. The attributes of the weak entity are included in the struct < ... >
construct, which corresponds to a tuple constructor.

Step 6.

e (Categories (union types) in an EER schema are difficult to map to ODL. It is
possible to create a mapping similar to the EER-to-relational mapping

e By declaring a class to represent the category and defining 1:1 relationships between
the category and each of its super classes.

Step 7.

e An n-ary relationship with degree n > 2 can be mapped into a separate class, with
appropriate references to each participating class.

e These references are based on mapping a 1:N relationship from each class that
represents a participating entity type to the class that represents the n-ary
relationship.

e An M:N binary relationship, especially if it contains relationship attributes, may also
use this mapping option, if desired.

e The mapping has been applied to a subset of the UNIVERSITY database schema in
the context of the ODMG object database standard. The mapped object schema
using the ODL notation is shown.

EER to ODB mapping diagram:

Coltp > ol Nam3

Student ' College

Sample E-R Diagram

EER (UML class diagram):

(PUR_ORDER
W id inte ger(10)
D number integer(10} N
] date date N

PRODUCT

inte ger(10)
varchar(100) [}J]
varchar(255) [}J]
PUR_ORDERId integer(10)

|

(Prire|)
§
¢
:

Result:

Exp:9 OBJECT FEATURES OF SQL-UDTs

Date:
Aim:

Obijects of SOL:

e SQL objects are schemas, journals, catalogues, tables, aliases, views, indexes,
constraints, triggers, sequences, stored procedures, user-defined functions,
user-defined types, global variables, and SQL packages, SQL creates and
maintains these objects.

UDT in SOL:

e The UDT is similar to an alias data type and it uses the existing data types in
SQL server or Azure SQL database.

e SQL server supports two kinds of user defined types
> User- defined data type.
> User- defined table type

Use of UDT in sql server:

e User defined type can be used in the definition of database objects such as
variables in transact-SQL batches, in functions and stored procedures, and as
arguments in functions and stored procedures.

Sub- types of UDT in SOL:

» Exact numeric.

» Approximate numeric.
» Date and Time.

» Character String.

» Unicode character strings.

» CLR data types.
> Spatial data types

Tables using UDTs:

e There is no special syntax for creating a UDT column in a table. You can use the
name of the UDT in column definition as though it were one of the intrinsic
SQL server data types. The following CREATE TABLE Transact- SQL
statement creates a table named points, with a column named ID, which is
defined as an into identity column is named PointgValue, with a data type of
Point.

Inheritance in SOL object types:

e SQL object inheritance is based on a family tree of object types that forms a
type hierarchy. The type hierarchy consists of a parent object type, called a
super type, and one or more levels of child object types, called subtypes, which
are derived from the parent.

o A subtype can be derived from a super type either directly or indirectly through
intervening levels of other subtypes.

e A super type can have multiple sibling subtypes, but a subtype can have at most
one direct parent super type (single inheritance).

A
Supertype of all

t

1 |

s e of D
ubtypea of A; .
Supsyl'f e of © Subtype of &;

1

C
Subtype of B

Method Definition:

e A method is procedure or function that is part of the object type definition, and
that can operate on the attributes of the type. Such methods are also
called member methods, and they take the keyword vevser When you specify
them as a component of the object type.

e Method specification

e Method names
e Method name overloading

Implementing Methods

To implement a method, create the PL/SQL code and specify it within
a CREATE TYPE BODY statement.

For example, consider the following definition of an object type named rational type:

CREATE TYPE rational_type AS OBJECT
(numerator INTEGER,
denominator INTEGER,
MAP MEMBER FUNCTION rat_to_real RETURN REAL,
MEMBER PROCEDURE normalize,
MEMBER FUNCTION plus (x rational_type)
RETURN rational_type);

Example: The following definition is shown merely because it defines the func-
tiongcd, which is used in the definition of the normalize method in
the CREATE TYPE BODY statement later in this section.

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- Find greatest common divisor of x and y. For example, if
-- (8,12) is input, the greatest common divisor is 4.
-- This will be used in normalizing (simplifying) fractions.
-- (‘You need not try to understand how this code works, unless
-- you are a math wizard. It does.)
ans INTEGER,;
BEGIN
IF (y <= x) AND (x MOD y =0) THEN
ans :=y;
ELSIF x <y THEN
ans :=gcd(y, X); -- Recursive call
ELSE
ans := gcd(y, x MOD y); -- Recursive call
END IF;
RETURN ans;
END;

Result:

Exp: 10 Querying the Object-relational database using Object Query Language
Date:

Aim:

Obiject—relational database

e An object-relational database (ORD), or object—relational database management
system (ORDBMS), is a database management system (DBMS) similar to a rela-
tional database, but with an object-oriented database model: objects, classes and
inheritance are directly supported in database schemas and in the query language.
In addition, just as with pure relational systems, it supports extension of the data
model with custom data types and methods.

Object 1: Maintenance Report Object 1 Instance

Date 0O1-12-01
S ctiviby Code 2

Route MNo. -95

D aily Production 2.5

Eqgquiprment Hours .0

Labor Hours a0

Object 2: Maintenance Actiwvity

Activitby Code

A ctivity MNarme

Production Unit

Aoverage Daily Production Rate

e An object-relational database can be said to provide a middle ground between relational
databases and object-oriented databases. In object—relational databases, the approach is
essentially that of relational databases.

e The data resides in the database and is manipulated collectively with queries in a query
language.

e At the other extreme are OODBMS in which the database is essentially a persistent
object store for software written in an object-oriented programming language, with a

programming API for storing and retrieving objects, and little or no specific support for
querying.
Procedure:

» CREATE.
> INSERT.
» UPDATE.
» DELETE

Program:

CREATE TABLE Employees (FirstName VARCHAR(32)
NOT NULL,

Surname VARCHAR(64) NOT NULL,DOB DATE NOT
NULL,

Salary DECIMAL(10,2) NOT NULLCHECK (Salary > 0.0),
Address_1 VARCHAR(64) NOT NULL,Address_2 VAR-
CHAR(64) NOT NULL,

City VARCHAR(48) NOT NULL,State CHAR(2) NOT
NULL,ZipCode INTEGER NOT NULL,PRIMARY KEY (
Surname, FirstName, DOB));

INSERT INTO Employees (Pager Number, Pass_Code, Mes-
sage)

SELECT E.Pager_Number,E.Pass_Code,

Print(E.Name) || ": Call 1-800-TEMPS-R-US for immediate
INFORMIX DBA job'

FROM Temporary_Employees E

WHERE Contains (GeoCircle('(-122.514, 37.221)", '60
miles")),E.LivesAt)

AND DocContains (E.Resume, 'INFORMIX and Database
Administrator')

AND NOT IsBooked (Period(TODAY, TODAY +
7),E.Booked);

SELECT *FROM Employees;

OQutput:

Erloyess

Name:PersonNeme | DOB:date | Salary: Cumency | Address: NailAddrass | LivesAL:GeoPoint | Resume: Document

(Encten, Aber) | 03441879 | ONAZ5.000 (12 Gelrengrasse..) |) Physics, heoreical.
(e, Mate F2500 (190 Rue de Seng..) | (Physis, sxperinenia..
(Pk, Mex OV19000 | 160 Vokenstasse | |) Physics, expermenal ..

Hibert, David SF20,000 (10 Goneva dvenue) | athematis, polfics. .

Result:

