

 RECORD NOTE BOOK

Name of the Student :

Register Number :

Department / Semester :

Subject Title / Code :

lsisreviving@gmail.com
Typewritten text
DATABASE DESIGN AND MANAGEMENT LAB MANUAL

INDEX

Ex.No.

Date

Title of the experiment

Page.No.

Staff Initial

Exp:1 Database Development Lifecycle of Banking Management

Date:

Aim:

Steps:

Database Planning : To plan the effective development of banking, the efficient way

to use it by the users

System Definition: The system definition is done to manage the scope and the range

of boundaries. A bank collects money, cheques, bills and drafts. It accepts deposits

from the public & lends loan to those who are in need of it.

Requirements Collection And Analysis :

1) The XYZ bank can have many automated teller machines(ATMs), and the

new system shall provide functionally on all ATMs.

2) The bank performs 3 types of functions;

a) Withdrawal of funds

b) Query of account balance

c) Transfer of funds from one bank account to another in the same bank

3) The ATM card must be authorized and issues by the

bank.

4) The system shall allow the customer to enter the Correct PIN in no more

three attempts .The failure this will lead to confiscation of the ATM card

5) The banking system also identifies that whether there is sufficient amount in

the bank before transaction

6) The customer records , account records and debit card records will all be

maintained at the server and shall not be the responsibility of the system

7) The system shall be linked with the bank server through communication

systems, which are beyond the scope of the current system. It is assumed that

this facility is always available.

 Database Design: The database is designed in such a way that it contains the details

of the account complaints, customer, interest, loan and transactions.

Selection of DBMS: The DBMS must be selected for the database.

Prototyping: We must give a prototyping system of our banking management system.

Implementation: The implementation of our idea must be done.

Data conversion and loading: Converting the existing application to run the new

database.

Operational Maintenance: Implementing and monitoring the system.

Class Diagram:

Use Case Diagram:

SCOPE OF BANKING MANAGEMENT:

• It can be used by bank employees and customer depending on the bank policies.

It can be used by several employees at the same time. It can be accessed using

any general web browser with geographical interface

Result:

EXP: 2 ER- and EER-to-Relational Mapping

Date:

Aim:

Steps:

➢ ER-to-Relational mapping algorithm

❖ step 1: mapping of regular entity types

❖ step 2: napping of weak entity types

❖ step 3: mapping of binary 1:1 relation types

❖ step 4: mapping of binary 1:N relationship types

❖ step 5: mapping of binary M:N relationship types

❖ step 6: mapping of multi valued attributes

❖ step 7: mapping of N-ary relationship types

➢ mapping EER model constructs to relations

❖ step 8: options for mapping specialization or generalization

❖ step 9: mapping of union types (categories)

ER conceptual schema:

Resulting relational database schema:

Together of relational and conceptual schema:

Step 1:

• Mapping of regular entity types

• For each regular entity type E in the ER schema, create a relation R that includes

all the simple attributes of E.

• Include only the simple component attributes of a composite attribute. Choose

one of the key attributes of E as primary key for R.

• If the chosen key of E is composite, the set of simple attributes that form it will

together form the primary key of R .

• e.g., EMPLOYEE, DEPARTMENT, PROJECT

Step 2:

• Mapping of weak entity types.

• For each weak entity type W in the ER schema with owner entity type E, create a

relation R and include all simple attributes of W as attributes of R .

• Include as foreign key attributes of R the primary key attribute(s) of the

relation(s) that correspond to the owner entity type(s). The primary key of R is

the combination of the primary key(s) of the owner(s) and the partial key of the

weak entity type W, if any.

• If there is a weak entity type E2 whose owner is also a weak entity type E1, then

E1 should be mapped before E2 to determine its primary key first.

• e.g., DEPENDENT

Step 3:

• Mapping of binary 1:1 relationship types

• For each binary 1:1 relationship type R in the ER schema, identify the relations S

and T that correspond to the entity types participating in R

• Foreign key approach

➢ choose one of the relations, S, and include as a foreign key in S the primary

key of T

➢ include all the simple attributes of R as attributes of S

• Merged relation option

➢ merge the two entity types and the relationship into a single relation

• Relationship relation option

➢ set up a third relation R for the purpose of cross-referencing the primary keys

of S and T

• MANAGES -> DEPARTMENT.MGRSSN,DEPARTMENT.MGRSTARTDATE

Step 4:

• Mapping of binary 1:N relationship types

• For each binary 1:N relationship type R, identify the relation S that represents the

participating entity type at the N-side of the relationship type

• Include as foreign key in S the primary key of the relation T that represents the

other entity type participating in R

• Include any simple attributes of the 1:N relationship type as attributes of S

• e.g., WORKS_FOR: S = EMPLOYEE, T = DEPARTMENT, DNO: the primary

key of T

Step 5:

• Mapping of binary M:N relationship types

• For each binary M:N relationship type R, create a new relation S to represent R

• Include as foreign key attributes in S the primary keys of the relations that

represent the participating entity types

• Their combination will form the primary key of S

• Include any simple attributes of R as attributes of S

• e.g., WORKS_ON: S = WORKS_ON

Step 6:

• Mapping of multi valued attributes

• For each multi valued attribute A, create a new relation R

• R will include an attribute corresponding to A, plus the primary key attribute K -

as a foreign key in R – of the relation that represents the entity type or

relationship type that has A as an attribute

• The primary key of R is the combination of A and K

• If the multi valued attribute is composite, include its simple components

• e.g., Locations: A = DLOCATION, R = DEPT_LOCATIONS, K = DNUMBER.

Step 7:

• Mapping of N-ary relationship types

• For each n-ary relationship type R, where n > 2, create a new relation S to

represent R

• Include as foreign key attributes in S the primary keys of the relations that

represent the participating entity types

• Include any simple attributes of R as attributes of S

• The primary key of S is usually a combination of all the foreign keys that

reference the relations representing the participating entity types e.g., SUPPL

Step 8:

• options for mapping specialization or generalization

• convert each specialization with m subclasses {S1, S2, …, Sm} and superclass C,

where the attributes of C are {k, a1, …, an} and k is the key, into relation

schemas using one of the following options

Option 8A:

• Multiple relations-super class and subclasses

• Create a relation L for C with attributes Attrs(L) = {k, a1, …, an} and PK(L) = k

• Create a relation Li for each subclass Si, with the attributes Attrs(Li) = {k} U

{attributes of Si} and PK(Li) = k

• Works for any specialization (total or partial, disjoint or overlapping)

Option 8B:

• Multiple relations-subclass relations only

• Create a relation Li for each subclass Si, with the attributes Attrs(Li) = {attributes

of Si} U{k, a1, …, an} and PK(Li) = k

• Only works for a specialization whose subclasses are total

Option 8C:

• single relation with one type attribute

• create a single relation L with attributes Attrs(L) = {k, a1, …, an} U {attributes

of S1} U… U{attributes of Sm} U{t} and PK(L) = k

• the attribute t is called a type attribute that indicates the subclass to which each

tuple belongs

• works only for a specialization whose subclasses are disjoint

Option 8D:

• single relation with multiple type attributes

• create a single relation schema L with attributes Attrs(L) = {k, a1, …, an} U

{attributes of S1} U… U{attributes of Sm} U{t1, …, tm} and PK(L) = k

• each ti is a Boolean type attribute indicating whether a tuple belongs to subclass

Si

• works for a specialization whose subclasses are overlapping

Mapping of shared subclasses

• shared subclass: a subclass of several superclasses, indicating multiple

inheritance

• apply any of the options in step 8 to a shared subclass

Mapping of categories

Category:

• A subclass of the union of two or more super classes that can have different keys

because they can be of different entity types

Step 9:

• mapping of categories

• mapping a category whose defining super classes have different keys

➢ specify a new key attribute, called a surrogate key

➢ include the surrogate key attribute as foreign key in each relation

corresponding to a super class of the category

➢ e.g., OWNER category

• mapping a category whose super classes have the same key

➢ no need for a surrogate key

➢ e.g., REGISTERED_VEHICLE

Result:

Exp: 3 PRACTICING DDL COMMANDS

Date:

Aim :

Procedure :

1) Create a table called employee1 with the following structure.

Name Type

emp_no integer

e_name Varchar(30)

desig Varchar(30)

age integer

salary integer

a. Add a column commission with domain to the Employee table.

b. Insert any five records into the table.

c. Update the column details of design.

d. Rename the column of employee1 table using alter command.

e. Truncate the table using truncate command

f. Drop the table using drop command.

g. Create a view in the name of emp_view and

 Display the contents of the table.

Data Definition Language (DDL) Commands :

Table Creation :

 Output :

Alter Table :

Output :-

Truncate Table :

 Output :

Drop Table :

 Output :

Views :

View Creation :

 OUTPUT :-

Result :

Exp: 4 PRACTICING DML COMMANDS

Date:

Aim :

Procedure :-

a. Insert any five records into the table.

b. Add a column to the table named place to the table using alter add command

c. Update the column details of place.

d. Delete a record from the table where the emp_no=1001.

Data Manipulation Language (DML) Commands :

Inserting Data To The Table :

 Output :

Updating Values In The Table :

 Output :

Deleting A Record From The Trable :

OUTPUT :

Result :

Exp:5 TRIGGERS AND STORED PROCEDURES

Date:

Aim :

Constraints And Security Using Triggers :

Procedure :

• Create an table in the name of price-list with the following columns

• Create a function calc_total_price() to calculate the total_price by

multiplying item_price and no_copies using create or replace function

command

• Now create a Trigger to execute the procedure calc_total_price().

• Then insert the values into the table.

• View the table using select query

Here following two points are important and should be noted carefully:

• OLD and NEW references are not available for table level triggers, rather you can

use them for record level triggers.

• If you want to query the table in the same trigger, then you should use the AFTER

keyword, because triggers can query the table or change it again only after the

initial changes are applied and the table is back in a consistent state.

• Above trigger has been written in such a way that it will fire before any DELETE

or INSERT or UPDATE operation on the table, but you can write your trigger on

a single or multiple operations, for example BEFORE DELETE, which will fire

whenever a record will be deleted using DELETE operation on the table.

COLUMN NAME DATA TYPE

isbn integer

title varchar(50)

item_price numeric

no_copies integer

total_price numeric

Query :

OUTPUT :-

Query :

Output :

Query :

Output :

Stored Procedures / Functions :

Definition :

A stored procedure is a prepared SQL code that you can save, so the code can be

reused over and over again. So if you have an SQL query that you write over and over

again, save it as a stored procedure, and then just call it to execute it.

Procedure :

• Create a table in the name of sum with the following columns:

• Create a procedure testing_procedure() to calculate the p_sum by adding the

p_num1 and p_num2 using create or replace procedures() statement.

• Call the procedures with the values using the call procedure_name() query

QUERY :

COLUMN NAME DATA TYPE

p_num1 numeric

p_num2 numeric

p_sum numeric

Output :

Result :

Exp: 6 Database Design Using Normalization Bottom-Up Approach

Date:

Aim:

 Normalization:

• It is the processes of reducing the redundancy of data in the table and also

improving the data integrity. So why is this required? Without Normalization in

SQL, we may face many issues such as.

• Insertion anomaly: It occurs when we cannot insert data to the table without the

presence of another attribute.

• Update anomaly: It is a data inconsistency that results from data redundancy

and a partial update of data.

• Deletion Anomaly: It occurs when certain attributes are lost because of the

deletion of other attributes.

• Normalization entails organizing the columns and tables of a database to ensure

that their dependencies are properly enforced by database integrity constraints.

• It usually divides a large table into smaller ones, so it is more efficient. In 1970

the First Normal Form was defined by Edgar F Codd and eventually, other

Normal Forms were defined.

• Normalization in SQL will enhance the distribution of data. Now let’s

understand each and every Normal Form with examples.

https://en.wikipedia.org/wiki/Database_normalization
https://www.edureka.co/blog/what-is-mysql/

1st Normal Form (1NF)

• In this Normal Form, we tackle the problem of atomicity. Here atomicity means

values in the table should not be further divided. In simple terms, a single cell

cannot hold multiple values. If a table contains a composite or multi-valued

attribute, it violates the First Normal Form.

• In the above table, we can clearly see that the Phone Number column has two

values. Thus it violated the 1st NF. Now if we apply the 1st NF to the above

table we get the below table as the result.

• We have achieved atomicity and also each and every column have unique

values.

2nd Normal Form (2NF)

• The first condition in the 2nd NF is that the table has to be in 1st NF. The table

also should not contain partial dependency. Here partial dependency means the

proper subset of candidate key determines a non-prime attribute.

EMPLOYEE ID DEPARTMENT ID OFFICE LOCATION

1EDU001 ED-T1 Pune

1EDU002 ED-S2 Bengaluru

1EDU003 ED-M1 Delhi

1EDU004 ED-T3 Mumbai

• This table has a composite primary key Employee ID, Department ID. The

non-key attribute is Office Location. In this case, Office Location only depends

on Department ID, which is only part of the primary key.

• Therefore, this table does not satisfy the second Normal Form. To bring this

table to Second Normal Form, we need to break the table into two parts.

EMPLOYEE ID DEPARTMENT ID

1EDU001 ED-T1

1EDU002 ED-S2

1EDU003 ED-M1

1EDU004 ED-T3

https://www.edureka.co/blog/primary-key-in-sql/

DEPARTMENT ID OFFICE

LOCATION

ED-T1 Pune

ED-S2 Bengaluru

ED-M1 Delhi

ED-T3 Mumbai

• In the table, the column Office Location is fully dependent on the primary key of

that table, which is Department ID.

3rd Normal Form (3NF)

• The table has to be in 2NF before proceeding to 3NF. The other condition is

there should be no transitive dependency for non-prime attributes.

• That means non-prime attributes (which doesn’t form a candidate key) should

not be dependent on other non-prime attributes in a given table.

• So a transitive dependency is a functional dependency in which X → Z (X

determines Z) indirectly, by virtue of X → Y and Y → Z.

STUDENT ID STUDENT

NAME

SUBJECT ID SUBJECT ADDRESS

1DT15ENG01 Alex 15CS11 SQL Goa

1DT15ENG02 Barry 15CS13 JAVA Bengaluru

1DT15ENG03 Clair 15CS12 C++ Delhi

1DT15ENG04 David 15CS13 JAVA Kochi

• In the above table, Student ID determines Subject ID, and Subject

ID determines Subject.

• Therefore, Student ID determines Subject via Subject ID. This implies that we

have a transitive functional dependency, and this structure does not satisfy the

third normal form.
STUDENT STUDENT

NAME

SUBJECT

ID

ADDRESS

1DT15ENG01 Alex 15CS11 Goa

1DT15ENG02 Barry 15CS13 Bengaluru

1DT15ENG03 Clair 15CS12 Delhi

1DT15ENG04 David 15CS13 Kochi

• The above tables all the non-key attributes are now fully functional dependent

only on the primary key.

• In the first table, columns Student Name, Subject ID and Address are only

dependent on Student ID. In the second table, Subject is only dependent

on Subject ID.

SUBJECT ID SUBJECT

15CS11 SQL

15CS13 JAVA

15CS12 C++

15CS13 JAVA

Boyce Codd Normal Form (BCNF)

• This is also known as 3.5 NF. It’s the higher version 3NF and was developed by

Raymond F. Boyce and Edgar F. Codd to address certain types of anomalies

which were not dealt with 3NF.

• The table has to satisfy 3rd Normal Form.

• In BCNF if every functional dependency A → B, then A has to be the Super

Key of that particular table.

STUDENT ID SUBJECT PROFESSOR

1DT15ENG01 SQL Prof. Mishra

1DT15ENG02 JAVA Prof. Anand

1DT15ENG02 C++ Prof. Kanthi

1DT15ENG03 JAVA Prof. Anand

1DT15ENG04 DBMS Prof. Lokesh

• One student can enrol for multiple subjects.

• There can be multiple professors teaching one subject .

• And, for each subject, a professor is assigned to the student.

• In the table Student ID, and Subject form the primary key, which means

the Subject column is a prime attribute. But, there is one more

dependency, Professor → Subject.

• And while Subject is a prime attribute, Professor is a non-prime attribute,

which is not allowed by BCNF.

• Dividing the table into two parts. One table will hold Student ID which already

exists and newly created column Professor ID.

STUDENT ID PROFESSOR ID

1DT15ENG01 1DTPF01

1DT15ENG02 1DTPF02

1DT15ENG02 1DTPF03

• And in the second table, we will have the columns Professor

ID, Professor and Subject.

PROFESSOR ID PROFESSOR SUBJECT

1DTPF01 Prof. Mishra SQL

1DTPF01 Prof. Anand JAVA

1DTPF01 Prof. Kanthi C++

: : :

• By this we satisfiying the Boyce Codd Normal Form.

Bottom –up approach:

• Normalisation is a bottom-up approach which starts with a collection of

attributes and organises them into well-structured relations which are free from

redundant data.

BCNF: Boyce-Codd Normal Form

Result:

Exp:7: Develop A Database Application Using IDE/RAD Tools

Date:

Aim:

 Procedure:

• Open you Microsoft Visual Studio 2010, 2012 or higher, or just your

Microsoft Visual Basic .Net.

• Create a new project (select File and New Project).For visual studio user:

(select Visual Basic then Windows Form Application).

• Here is the sample form layout or design. Feel free to design your form.We

need to add the following controls:

➢ 2 labels

➢ 2 textboxes

➢ 2 buttons

➢ 1 checkbox.

• The program will first validate the input of the user, the user must enter a

username and password or else a message will appear that will notify the user

that username and password field is required.

• The program will then match or compare the user input to the criteria of the

program. The username must be admin and password must also be admin

which means that the username and password combination must be admin or

else a message will prompt you that your username and password is

incorrect.

• To clear the username and password field, kindly double click the Reset

button and paste the code below.

TextBox1.Clear()

TextBox2.Clear()

• Additional feature of this program is to allow the user to view or to make its

password visible or in simplest explanation is to view what you are typing in the

password field. Kindly double click the Show password checkbox and paste the

line of codes below.

Program:

If TextBox1.Text = "" Then

MessageBox.Show("Please enter username")

TextBox1.Focus()
Exit Sub

ElseIf TextBox2.Text = "" Then

MessageBox.Show("Please enter password")

TextBox2.Focus()

Exit Sub

End If

If TextBox1.Text = "admin" And TextBox2.Text = "admin" Then

MessageBox.Show("welcome admin")

Else

MessageBox.Show("incorrect username or password")

End If

If CheckBox1.Checked = True Then

TextBox2.PasswordChar = ""

Else
TextBox2.PasswordChar = "*"

End If

Output:

Result:

Exp:8 Database design using EER to- ODB mapping/ UML class diagrams

Date:

Aim:

Procedure:

Mapping an EER Schema to an ODB Schema

• It is relatively straightforward to design the type declarations of object classes for an

ODBMS from an EER schema that contains neither categories nor n ary relationships

with n > 2.

• However, the operations of classes are not specified in the EER diagram and must be

added to the class declarations after the structural mapping is completed. The outline

of the mapping from EER to ODL is as follows:

Step 1.

• Create an ODL class for each EER entity type or subclass. The type of the ODL

class should include all the attributes of the EER class.

• Multivalued attributes are typically declared by using the set, bag, or list

constructors. If the values of the multivalued attribute for an object should be

ordered, the list constructor is chosen; if duplicates are allowed, the bag constructor

should be chosen; otherwise, the set constructor is chosen.

• Composite attributes are mapped into a tuple constructor (by using a struct

declaration in ODL).

Step 2.

• Add relationship properties or reference attributes for each binary relationship into

the ODL classes that participate in the relationship. These may be created in one or

both directions.

• If a binary relationship is represented by references in both directions, declare the

references to be relationship properties that are inverses of one another, if such a

facility exists.

• If a binary relationship is represented by a reference in only one direction, declare

the reference to be an attribute in the referencing class whose type is the referenced

class name.

• Depending on the cardinality ratio of the binary relationship, the relationship

properties or reference attributes may be single-valued or collection types. They will

be single valued for binary relationships in the 1:1 or N:1 directions

Step 3.

• Include appropriate operations for each class. These are not available from the EER

schema and must be added to the database design by referring to the original

requirements.

• A constructor method should include program code that checks any constraints that

must hold when a new object is created.

• A destructor method should check any constraints that may be violated when an

object is deleted.

Step 4.

• An ODL class that corresponds to a subclass in the EER schema inherits the type

and methods of its super class in the ODL schema.

Step 5.

• Weak entity types can be mapped in the same way as regular entity types. An

alternative mapping is possible for weak entity types that do not participate in any

relationships except their identifying relationship

• these can be mapped as though they were composite multivalued attributes of the

owner entity type, by using the set < struct < ... >> or list < struct < ... >>

constructors. The attributes of the weak entity are included in the struct < ... >

construct, which corresponds to a tuple constructor.

Step 6.

• Categories (union types) in an EER schema are difficult to map to ODL. It is

possible to create a mapping similar to the EER-to-relational mapping

• By declaring a class to represent the category and defining 1:1 relationships between

the category and each of its super classes.

Step 7.

• An n-ary relationship with degree n > 2 can be mapped into a separate class, with

appropriate references to each participating class.

• These references are based on mapping a 1:N relationship from each class that

represents a participating entity type to the class that represents the n-ary

relationship.

• An M:N binary relationship, especially if it contains relationship attributes, may also

use this mapping option, if desired.

• The mapping has been applied to a subset of the UNIVERSITY database schema in

the context of the ODMG object database standard. The mapped object schema

using the ODL notation is shown.

EER to ODB mapping diagram:

EER (UML class diagram):

Result:

Exp:9 OBJECT FEATURES OF SQL-UDTs

Date:

Aim:

Objects of SQL:

• SQL objects are schemas, journals, catalogues, tables, aliases, views, indexes,

constraints, triggers, sequences, stored procedures, user-defined functions,

user-defined types, global variables, and SQL packages, SQL creates and

maintains these objects.

UDT in SQL:

• The UDT is similar to an alias data type and it uses the existing data types in

SQL server or Azure SQL database.

• SQL server supports two kinds of user defined types

➢ User- defined data type.

➢ User- defined table type

Use of UDT in sql server:

• User defined type can be used in the definition of database objects such as

variables in transact-SQL batches, in functions and stored procedures, and as

arguments in functions and stored procedures.

Sub- types of UDT in SQL:

➢ Exact numeric.

➢ Approximate numeric.

➢ Date and Time.

➢ Character String.

➢ Unicode character strings.

➢ CLR data types.

➢ Spatial data types

Tables using UDTs:

• There is no special syntax for creating a UDT column in a table. You can use the

name of the UDT in column definition as though it were one of the intrinsic

SQL server data types. The following CREATE TABLE Transact- SQL

statement creates a table named points, with a column named ID, which is

defined as an into identity column is named PointgValue, with a data type of

Point.

Inheritance in SQL object types:

• SQL object inheritance is based on a family tree of object types that forms a

type hierarchy. The type hierarchy consists of a parent object type, called a

super type, and one or more levels of child object types, called subtypes, which

are derived from the parent.

• A subtype can be derived from a super type either directly or indirectly through

intervening levels of other subtypes.

• A super type can have multiple sibling subtypes, but a subtype can have at most

one direct parent super type (single inheritance).

Method Definition:

• A method is procedure or function that is part of the object type definition, and

that can operate on the attributes of the type. Such methods are also

called member methods, and they take the keyword MEMBER when you specify

them as a component of the object type.

• Method specification

• Method names

• Method name overloading

Implementing Methods

To implement a method, create the PL/SQL code and specify it within

a CREATE TYPE BODY statement.

For example, consider the following definition of an object type named rational type:

CREATE TYPE rational_type AS OBJECT

(numerator INTEGER,

 denominator INTEGER,

 MAP MEMBER FUNCTION rat_to_real RETURN REAL,

 MEMBER PROCEDURE normalize,

 MEMBER FUNCTION plus (x rational_type)

 RETURN rational_type);

Example: The following definition is shown merely because it defines the func-

tion gcd, which is used in the definition of the normalize method in

the CREATE TYPE BODY statement later in this section.

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS

-- Find greatest common divisor of x and y. For example, if

-- (8,12) is input, the greatest common divisor is 4.

-- This will be used in normalizing (simplifying) fractions.

-- (You need not try to understand how this code works, unless

-- you are a math wizard. It does.)

--

 ans INTEGER;

BEGIN

 IF (y <= x) AND (x MOD y = 0) THEN

 ans := y;

 ELSIF x < y THEN

 ans := gcd(y, x); -- Recursive call

 ELSE

 ans := gcd(y, x MOD y); -- Recursive call

 END IF;

 RETURN ans;

END;

Result:

Exp: 10 Querying the Object-relational database using Object Query Language

Date:

Aim:

Object–relational database

• An object–relational database (ORD), or object–relational database management

system (ORDBMS), is a database management system (DBMS) similar to a rela-

tional database, but with an object-oriented database model: objects, classes and

inheritance are directly supported in database schemas and in the query language.

In addition, just as with pure relational systems, it supports extension of the data

model with custom data types and methods.

• An object–relational database can be said to provide a middle ground between relational

databases and object-oriented databases. In object–relational databases, the approach is

essentially that of relational databases.

• The data resides in the database and is manipulated collectively with queries in a query

language.

• At the other extreme are OODBMS in which the database is essentially a persistent

object store for software written in an object-oriented programming language, with a

programming API for storing and retrieving objects, and little or no specific support for

querying.

Procedure:

➢ CREATE.

➢ INSERT.

➢ UPDATE.

➢ DELETE

 Program:

CREATE TABLE Employees (FirstName VARCHAR(32)

NOT NULL,

Surname VARCHAR(64) NOT NULL,DOB DATE NOT

NULL,

Salary DECIMAL(10,2) NOT NULLCHECK (Salary > 0.0),

Address_1 VARCHAR(64) NOT NULL,Address_2 VAR-

CHAR(64) NOT NULL,

City VARCHAR(48) NOT NULL,State CHAR(2) NOT

NULL,ZipCode INTEGER NOT NULL,PRIMARY KEY (

Surname, FirstName, DOB));

INSERT INTO Employees (Pager_Number, Pass_Code, Mes-

sage)

SELECT E.Pager_Number,E.Pass_Code,

Print(E.Name) || ': Call 1-800-TEMPS-R-US for immediate

INFORMIX DBA job'

FROM Temporary_Employees E

WHERE Contains (GeoCircle('(-122.514, 37.221)', '60

miles')),E.LivesAt)

AND DocContains (E.Resume, 'INFORMIX and Database

Administrator')

AND NOT IsBooked (Period(TODAY, TODAY +

7),E.Booked);

SELECT *FROM Employees;

Output:

Result:

