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UNIT - INTRODUCTION & NUMBER THEORY

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption
techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography).FINITE
FIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithmetic-Euclids algorithm-Finite fields-
Polynomial Arithmetic —Prime numbers-Fermat™s and Euler”s theorem-Testing for primality -The Chinese
remainder theorem- Discrete logarithms.

COMPUTER SECURITY CONCEPTS

Computer Security

The protection afforded to an automated information system in order to attain the applicable objectives of
preserving the integrity, availability, and confidentiality of information system resources (includes
hardware, software, firmware, information / data, and telecommunications)

Confidentiality

e Data confidentiality
o Assures that private or confidential information is not made available or disclosed to unauthorized

e Privacy
o Assures that individuals control or influence what information related to them may be collected and
stored and by whom and to whom that information may be disclosed.
Integrity
o Data integrity
o Assures that information and programs are changed only in a specified and authorized manner.
e System integrity
o Assures that a system performs its intended function in an unimpaired manner, free from deliberate or
inadvertent unauthorized manipulation of the system.
Availability

e Assures that systems work promptly and service is not denied to authorized users.

CIA Triad
Confidentiality

e Preserving authorized restrictions on information
access and disclosure, including means for protecting
personal privacy and proprietary information.

e A loss of confidentiality is the unauthorized disclosure
of information.

Integrity

services

e Guarding against improper information modification
or destruction, including ensuring information
nonrepudiation and authenticity.

Availability

e A loss of integrity is the unauthorized modification

or destruction of information. Fioun The Security Requirements
Availability Iriad

e Ensuring timely and reliable access to and use of information
e Aloss of availability is the disruption of access to or use of information or an information system.

Authenticity
e The property of being genuine and being able to be verified and trusted
Accountability

e The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity
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The OSI Security Architecture

e |TU-T Recommendation X.800, Security Architecture for OSI, defines such a systematic approach
e The OSI security architecture focuses on security attacks, mechanisms, and services.

Security attack

e Any action that compromises the security of information owned by an organization.
Security mechanism

e A process (or a device) that is designed to detect, prevent, or recover from a security attack.

Security service

e A processing or communication service that enhances the security of the data processing systems and the
information transfers of an organization

e The services are intended to counter security attacks, and they make use of one or more
security mechanisms to provide the service

Security Attacks

e means of classifying security attacks, used both in X.800 and RFC 2828
e A passive attack attempts to learn or make use of information but does not affect system resources.
e An active attack attempts to alter system resources or affect their operation.

Passive Attacks

e in the nature of eavesdropping on, or monitoring of, transmissions.

e The goal is to obtain information that is being transmitted.

o very difficult to detect, because they do not involve any alteration of the data

o feasible to prevent the success of these attacks, usually by means of encryption
e emphasis in dealing with passive attacks is on prevention rather than detection

Two types of passive attacks

e Release of message contents
o Traffic analysis.

Release Of Message Contents

Darth Read contents of
message from Bob
to Alice

o Atelephone conversation, an
electronic mail message, and a
transferred file may contain sensitive or
confidential information

e prevent an opponent from learning the
contents of these transmissions

Traffic Analysis

e observe the pattern of these messages

e The opponent could determine the
location and identity of communicating E=w
hosts and could observe the frequency Darth
and length of messages being exchanged. -~

Observe pattem of
messages from Bob
to Alice

e This information might be useful in
guessing the nature of the communication
that was taking place

Internet or
other comms facility

Bob
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Masquerade

Example

Denial Of Service

Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream
detect and to recover from any disruption or delays caused by them

can be subdivided into four categories:
o masquerade,

o replay,

o modification of messages

o denial of service

one entity pretends to be a different entity

usually includes one of the other forms Darth Message from Darth
of active attack that appears to be

authentication sequences can be
captured and replayed after a valid
authentication sequence

Replay

passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect

Darth modifies
message from Bob
Lo Alice

Darth Capture message from

(b) Replay .
e} Modification of messages

Modification Of Messages

some portion of a legitimate message is altered, or that messages are delayed or reordered, to produce
an unauthorized effect

Example

a message meaning “Allow John Smith to read confidential file accounts” is modified to mean “Allow
Fred Brown to read confidential file accounts.”

prevents or inhibits the normal use or
management of communications facilities

may have a specific target; for example, an D.mh"
entity may suppress all messages directed >
to a particular destination

Darth disrupts service
provided by server

disruption of an entire network, either by
disabling the network or by overloading it with
messages so as to degrade performance

Server

(d) Denial of service
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Security Services in X.800

e X.800 defines a security service as a service that is provided by a protocol layer of communicating open
systems and that ensures adequate security of the systems or of data transfers.

e RFC 2828, defines as a processing or communication service that is provided by a system to give a specific
kind of protection to system resources;

o security services implement security policies and are implemented by security mechanisms.
X.800

o divides these services into five categories and fourteen specific services

Authentication

e The assurance that the communicating entity is the one that it claims to be
e Two types

o Peer Entity Authentication
o Data-Origin Authentication

Access control
e The prevention of unauthorized use of a resource
Data confidentiality

e The protection of data from unauthorized disclosure.
e Four Types
o Connection Confidentiality
Connectionless Confidentiality

o
o Selective-Field Confidentiality
o Traffic-Flow Confidentiality

Data integrity

e The assurance that data received are exactly as sent by an authorized entity (i.e., contain no
modification, insertion, deletion, or replay).

o Five types
o Connection Integrity with Recovery
Connection Integrity without Recovery
Selective-Field Connection Integrity
Connectionless Integrity
Selective-Field Connectionless Integrity

o O O O

Nonrepudiation

e Provides protection against denial by one of the entities involved in a communication of having participated
in all or part of the communication

e Two types
o Nonrepudiation, Origin
o Nonrepudiation, Destination

Security Mechanisms in X.800.

o feature designed to detect, prevent, or recover from a security attack
e no single mechanism that will support all services required

Specific security mechanisms:

o those that are implemented in a specific protocol layer, such as TCP or an application-layer protocol

e encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding,
routing control, notarization

pervasive security mechanisms:

o trusted functionality, security labels, event detection, security audit trails, security recovery
o those that are not specific to any particular protocol layer or security service
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Model for Network Security

Trusted third party
(e.g., arbiter, distributer
of secret information)

Sender . Recipient
Information
Security-related channel Security-related
- transformation . . transformation -
O = L)
% S 3 \ y & 8 4
= T % & 7 g \r s
Secret Secret
information information
Opponent

e A message is to be transferred from one party to another across some sort of Internet service.
e The two parties, who are the principals in this transaction, must cooperate for the exchange to take place.

¢ Alogical information channel is established by defining a route through the Internet from source to
destination and by the cooperative use of communication protocols (e.g., TCP/IP) by the two principals
All the techniques for providing security have two components:

e A security-related transformation on the information to be sent.
o Examples: encryption of the message, addition of a code based on the contents

e Some secret information shared by the two principals, unknown to the opponent o
Example: encryption key used in conjunction with the transformation

A trusted third party may be needed to achieve secure transmission.

o for distributing the secret information to the two principals
o to arbitrate disputes between the two principals concerning the authenticity of a message transmission

Four basic tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation
e such that an opponent cannot defeat its purpose.
2. Generate the secret information to be used with the algorithm.
Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm and the
secret information to achieve a particular security service

w

Network Access Security Model

Information system

Computing resources

Opponent (processor, memory, 1/0)

—human (e.g., hacker} /
—software (e.g., virus, worm) ', | J
\

Access channel  Gatekeeper | Software
function

Data

Processes

Internal security controls
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e protecting an information system from unwanted access from hacker, intruder
e hacker who, with no malign intent, simply gets satisfaction from breaking and entering a computer system.

e intruder can be a disgruntled employee who wishes to do damage or a criminal who seeks to exploit
computer assets for financial gain

e placement in a computer system of logic that exploits vulnerabilities in the system and that can affect
application programs as well as utility programs, such as editors and compilers
o Two kinds of threats:
Information access threats: Intercept or modify data on behalf of users who should not have access
Service threats: Exploit service flaws in computers to inhibit use by legitimate users
Examples: Viruses and worms, spread using disks & inserted over network

Classical Encryption Techniques

e  Symmetric Cipher Model
o Cryptanalysis and Brute-Force Attack

O O O

e  Substitution Techniques
Caesar Cipher

Monoalphabetic Ciphers
Playfair Cipher

Hill Cipher
Polyalphabetic Ciphers
One-Time Pad
e Transposition Techniques
e Rotor Machines
e Steganography

oo O OO0 O

Introduction

o Symmetric encryption is a form of cryptosystem in which encryption and decryption are performed using
the same key. It is also known as conventional encryption.

e Symmetric encryption transforms plaintext into ciphertext using a secret key and an encryption algorithm.
Using the same key and a decryption algorithm, the plaintext is recovered from the ciphertext.

e The two types of attack on an encryption algorithm are cryptanalysis,based on properties of the encryption
algorithm, and brute-force, which involves trying all possible keys.

e Traditional (precomputer) symmetric ciphers use substitution and/or transposition techniques. Substitution
techniques map plaintext elements (characters, bits) into ciphertext elements. Transposition techniques
systematically transpose the positions of plaintext elements.

o Rotor machines are sophisticated precomputer hardware devices that use substitution techniques.

e Steganography is a technique for hiding a secret message within a larger one in such a way that others
cannot discern the presence or contents of the hidden message.

e An original message is known as the plaintext, while the coded message is called the ciphertext.

e The process of converting from plaintext to ciphertext is known as enciphering or encryption; restoring
the plaintext from the ciphertext is deciphering or decryption.

e The many schemes used for encryption constitute the area of study known as cryptography. Such a
scheme is known as a cryptographic system or a cipher.

e Techniques used for deciphering a message without any knowledge of the enciphering details fall into the
area of cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code.”The areas of
cryptography and cryptanalysis together are called cryptology
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Symmetric Cipher Model
A symmetric encryption scheme has five ingredients
¢ Plaintext
e Encryption algorithm
o performs various substitutions and transformations
e Secret key
o another input to the encryption algorithm
o avalue independent of the plaintext and of the algorithm
e Ciphertext
o For a given message, two different keys will produce two different ciphertexts
e Decryption algorithm
o encryption algorithm run in reverse
Simplified Model of Symmetric Encryption
Secrel key shared by Secret key shared by
sender and recipient sender and recipient
Transmitted
— X £ ciphertext 1 —
—> G| > @ |——
= i Y =EK, X) i) X=DK.v¥] |
Mt . Meatiition
: l.dmlﬂl Encryption algorithm Decryption algorithm Fradtiext
mput il ) . output
feg. AES) (reverse of encryption
algorithm )

Two requirements for secure use of conventional / symmetric encryption

e need a strong encryption algorithm

o The opponent should be unable to decrypt ciphertext or discover the key even if he or she is in
possession of a number of ciphertexts together with the plaintext that produced each ciphertext

e Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep

the key secure.

o If someone can discover the key and knows the algorithm, all communication using this key is readable

o do not need to keep the algorithm secret; we need to keep only the key secret
o the principal security problem is maintaining the secrecy of the key

Model of Symmetric Cryptosystem

Plain Text: X = [X1, X2, ., XM] Cryptanalyst '
5

Key: K=[K1, K2, ., KJ]
Ciphertext Y =[Y1, Y2, ., YN]
Y = E(K, X)

X= D(Ka Y) Message X Encryption
source algorithm Y=EK.X)

A

Decryption
algorithm

H

Secure channel
Key
source

Destination
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Cryptanalysis and Brute-Force Attack
Cryptanalysis

e Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of the general
characteristics of the plaintext or even some sample plaintext—ciphertext pairs.

e This type of attack exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or
to deduce the key being used.

e various types of cryptanalytic attacks based on the amount of information known to the cryptanalyst

Type of Attack Known to Cryptanalyst

e Encryption algorithm

e Ciphertext

Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key

e Ciphertext Only

¢ Known Plaintext

e Chosen Plaintext
e Chosen Ciphertext
e Chosen Text

Two schemes

¢ unconditionally secure
o if the ciphertext generated by the scheme does not contain enough information to determine uniquely
the corresponding plaintext, no matter how much ciphertext is available
e computationally secure
o meets either of the following criteria:
o The cost of breaking the cipher exceeds the value of the encrypted information.
o The time required to break the cipher exceeds the useful lifetime of the information.

Brute-force attack

e The attacker tries every possible key on a piece of ciphertext until an intelligible translation into plaintext
is obtained.

e On average, half of all possible keys must be tried to achieve success.

Cryptographic systems characterization

Three independent dimensions

e The type of operations used for transforming plaintext to ciphertext.
o substitution
- each element is mapped into another element
o transposition
: elements are rearranged
o product systems, involve multiple stages of substitutions and transpositions
e The number of keys used
o If both sender and receiver use the same key, the system is referred to as symmetric, single-key,
secret-key, or conventional encryption.
o If the sender and receiver use different keys, the system is referred to as asymmetric, two-key, or
public-key encryption
e The way in which the plaintext is processed.
o A block cipher processes the input one block of elements at a time, producing an output block for each
o input block.

o A stream cipher processes the input elements continuously, producing output one element at a
time, as it goes along
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Substitution Techniques

e A substitution technique is one in which the letters of plaintext are replaced by other letters or by
numbers or symbols

e If the plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit
patterns with ciphertext bit patterns

Julius Caesar Cipher

e replacing each letter of the alphabet with the letter standing three places further down the alphabet
e alphabet is wrapped around, so that the letter following Z is A

can define transformation as:

abcdefghijklmnopgqrstuvwxyzD
EFGHIJKLMNOPQRSTUVWXYZABC

mathematically give each letter a number

abcdefghij k 1 m n o p qor s t uv w x vy z
© 1234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

then have Caesar cipher as:

¢ =E(p) = (p + k) mod (26) p
=D(c) = (c — k) mod (26)
Cryptanalysis of Caesar Cipher

e only have 26 possible ciphers

e AmapstoAB,..Z

e could simply try each in turn

e a brute force search

e given ciphertext, just try all shifts of letters
e do need to recognize when have plaintext

Monoalphabetic Ciphers

e rather than just shifting the alphabet shuffle (jumble) the letters arbitrarily

e each plaintext letter maps to a different random ciphertext letter

e hence key is 26 letters long

o the “cipher” line can be any permutation of the 26 alphabetic characters, then there are 26! or greater
than 4x10%8 possible keys.

e This is 10 orders of magnitude greater than the key space for DES and would seem to eliminate brute-
force techniques for cryptanalysis

e Monoalphabetic ciphers are easy to break because they reflect the frequency data of the original alphabet
e A countermeasure is to provide multiple substitutes, known as homophones, for a single letter.

e For example, the letter e could be assigned a number of different cipher symbols, such as 16, 74, 35,
and 21, with each homophone assigned to a letter in rotation or randomly

Language Redundancy and Cryptanalysis

e human languages are redundant

e eg "th Ird s m shphrd shll nt wnt"

o letters are not equally commonly used

e in English E is by far the most common letter

o followed by T,R,N,I,0,A,S

o other letters like Z,J,K,Q,X are fairly rare

e have tables of single, double & triple letter frequencies for various languages
o two-letter combinations, known as digrams (ex: th)
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Playfair Cipher

e best-known multiple-letter encryption cipher
o treats digrams in the plaintext as single units and translates these units into ciphertext digrams

Playfair Key Matrix

e 5 x 5 matrix of letters constructed using a keyword M| O N A | R
o filling in the letters of the keyword (minus duplicates) from left to right and g B Y, [,3 l?

from top to bottom, E|F|G|ITJ|K
o filling in the remainder matrix with the remaining letters in alphabetic order. L P Q S  y
e The letters | and J count as one letter UV |W]| X | Z

e Example matrix using the keyword MONARCHY

Plaintext is encrypted two letters at a time, according to the following rules
e Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x,
o Ex: balloon would be treated as ba Ix lo on.

o Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the right, with
the first element of the row circularly following the last.

o Ex:aris encrypted as RM.

e Two plaintext letters that fall in the same column are each replaced by the letter beneath, with the top
element of the column circularly following the last.

o Ex: muis encrypted as CM.

e Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the column
occupied by the other plaintext letter.
o Ex: hs becomes BP and ea becomes IM (or JM, as the encipherer wishes)

Example

Given the key MONARCHY apply Play fair cipher to plain text “FACTIONALISM”
Solution

(p) FA CT IO NA LI SM

(c) IO DL FA AR SE LA

(d) FA CT IO NA LI SM

Security of Playfair Cipher

e security much improved over monoalphabetic since have 26 x 26 = 676 digrams

¢ would need a 676 entry frequency table to analyse and correspondingly more ciphertext
e was widely used for many years eg. by US & British military in WW1

e it can be broken, given a few hundred letters since still has much of plaintext structure

Hill Cipher

Findinn = :
o IIr'ltc «E':u '{".:J.‘n,I
'k, L | L
3x3 Matrix (k; .
x- rkyy Kiz o Kag
T 3x3 Matrix (kz-_ ko k::e)
[Al = kyykanks: Ky Ky Ky

|A| = ku"‘z:k“ - k'l.'l.kzi-iklﬂ - 'I':LEI{!J'I':Z-CZ‘. + 'i{::k!.ikl-il + k]:-i'l':Elk.iz - k"l.:-ikzik.ﬂ

10
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9
5

Example:

5 i
det(” f) = (5%x3) - (8x17)=-121mod26 = 9

We can show that 9 'mod 26 = 3, because 9 X 3 = 27mod 26 = 1 (see
Chapter 4 or Appendix E). Therefore, we compute the inverse of A as

A — 5 8
©oo\17 3
3 -8 3 18 9 54 9 2
-1 — 12 =3 = =
A "mod 26 J(_l? 5) (g 5) (2’}' 15) (1 15)

The Hill algorithm

e This encryption algorithm takes m successive plaintext letters and substitutes for them m ciphertext letters.

e The substitution is determined by m linear equations in which each character is assigned a numerical
value (@a=0,b=1,.,z=25)

e Form = 3, the system can be described as
c1 = (kupy + kippy + kizpz)mod 26
¢y = (knpy + kpp; + kyap;)mod 26
c3 = (knypy + kapz + kspz)mod 26
This can be expressed in terms of row vectors and matrices:
ki ki ks

(creaea) = (p p2p3)| ku ko ky3 |mod 26
ks1 k3 ki3

or

C = PK mod26

e where C and P are row vectors of length 3 representing the plaintext and ciphertext, and K is a 3x3
matrix representing the encryption key.

e Operations are performed mod 26.
e In general terms, the Hill system can be expressed as

C = E(K.P) = PK mod 26
P=D(K,C)=CK 'mod26 =PKK '="P

Example

Encrypt the message “meet me at the usual place at ten rather than eight oclock™ using the Hill cipher with the key (). Show your
calculations and the result.Show the calculations for the corresponding decryption of the ciphertext to recover the original plaintext.
1) mathematically give each letter a number

abcdefghij k1 mnopgonr s t uvwvwxy I
12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

12
2)
12 912 + 4xdy (124 20
{3 ;}II 3 ] == |15:11 + ?1‘4} = '[ aa) =2 mod 26 => (m) =2 '::]

3) 2™ pair fro plain text "et”

2} 1 pair from plain text “me” ==

—,

gy 4y a9y 1y By i
7 (19) {_5:04+'.'-'.1:1EI)_ {153} =>m == (23} == {x}

11
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4) Cipher text for "meet” is "ukix"
5} To get plain text from cipher text, we need to find the inverse of K
B) |4 = (BT — Sxd) == 43

T) Adj (A)== |: 7 _4] =:=-i|[_":'|5 _4} == 1—1;{_?5 _4] (= 43 % 26 = 17)

-5 9/ @ g g
B} Find the multiplier for 17, using 17 x X =1 mod 26 == X =23
161 -—952 i 3 —14 s 12 i .
== 2a == = 2 — v
g [_115 EIEI'I-‘J mod 26 {—LJ. 55 ]I [15 25} (~ Add 26 for — ive values)

10} P = CK™' = > For the ciper text of "uk™,

5 12y 20 5x20 + 12x10 220 12 m
(5 D)= ()= @) mere= ()= ()
15 257 \10 15x20 + 25x10 550 4 g
Hence the plain text is “me”

Polyalphabetic Ciphers

e use different monoalphabetic substitutions as one proceeds through the plaintext message.
e improve security using multiple cipher alphabets

e make cryptanalysis harder with more alphabets to guess and flatter frequency distribution

e general name for this approach is polyalphabetic substitution cipher

e has the following features in common:
o A set of related monoalphabetic substitution rules is used.
o A key determines which particular rule is chosen for a given transformation.

One-Time Pad

e improvement to the Vernam cipher that yields the ultimate in security

e using a random key that is as long as the message, so that the key need not be repeated
o the key is to be used to encrypt and decrypt a single message, and then is discarded.

e Each new message requires a new key of the same length as the new message

Example

ciphertext:ANKYODKYUREPFJIBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: px1lmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall
ciphertext:ANKYODKYUREPFJIBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: mfugpmiydgaxgoufhklllmhsqdqogtewbqgfgyovuhwt

plaintext: miss scarlet with the knife in the library
two fundamental difficulties

e problem of making large quantities of random keys
e problem of key distribution and protection

Transposition Techniques
A very different kind of mapping is achieved by performing some sort of permutation on the plaintext letters
Rail Fence Technique

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence
of diagonals and then read off as a sequence of rows.

12
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For example, to encipher the message "meet me after the toga party" with a rail fence of depth 2, we write
the following

mematrhtgpry
etefeteoaat
The encrypted message is

MEMATRHTGPRYETEFETEOQAAT
Pure Transposition Cipher

write the message in a rectangle, row by row, and read the message off, column by column, but permute
the order of the columns.

The order of the columns then becomes the key to the algorithm

Example

Key: 4312567

Plaintext: a t t a c k p
oOostpone
duntilt
Woamxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Double Transposition
performing more than one stage of transposition
Example

if the foregoing message is reencrypted using the same algorithm
Key: 43125 67
Input: ttnaapt
mtsuoao
dwcoilxEk
nlypetz
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ
This is a much less structured permutation and is much more difficult to cryptanalyze
Rotor Machines (Skip)
The machine consists of a set of independently rotating cylinders through which electrical pulses can flow.

Each cylinder has 26 input pins and 26 output pins, with internal wiring that connects each input pin to a unique
output pin

Steganography
A plaintext message may be hidden in one of two ways.

e The methods of steganography conceal the existence of the message

e The methods of cryptography render the message unintelligible to
outsiders o by various transformations of the text

Various ways to conceal the message

arrangement of words or letters within an apparently innocuous text spells out the real message

13
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Character marking

Selected letters of printed or typewritten text are overwritten in pencil. The marks are ordinarily not visible
unless the paper is held at an angle to bright light.

Invisible ink

A number of substances can be used for writing but leave no visible trace until heat or some chemical is applied
Pin punctures

Small pin punctures on selected letters are ordinarily not visible unless the paper is held up in front of a light.

Typewriter correction ribbon

Used between lines typed with a black ribbon, the results of typing with the correction tape are visible only
under a strong light

hiding a message by using the least significant bits of frames on a CD

o the Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with each pixel containing 24 bits
of RGB color information.

e The least significant bit of each 24-bit pixel can be changed without greatly affecting the quality of the image
e Thus you can hide a 2.3-megabyte message in a single digital snapshot

Number of drawbacks

o ot of overhead to hide a relatively few bits of information
e once the system is discovered, it becomes virtually worthless
o the insertion method depends on some sort of key
o Alternatively, a message can be first encrypted and then hidden using steganography

Advantage of steganography
e can be employed by parties who have something to lose should the fact of their secret communication be
discovered

e Encryption flags traffic as important or secret or may identify the sender or receiver as someone with
something to hide

14
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FINITE FIELDS AND NUMBER THEORY

Number Theory concepts

Divisibility and The Division Algorithm

Divisibility

« We say that a nonzero b divides a if a = mb for some m, where a, b and m are integers.
+« That is, b divides a, if there is no remainder on division.

The notation bla is commonly used to mean b divides a.
If bla, we say that b is a divisor of a.

The positive divisors of 24 are 1,2,3,4,6,8, 12, and 24.
13|182; —5/|30; 1?|289; —3/33;17|0
Properties of divisibility for integers

» Ifall. thena = +1.

» Ifalb and b|a, thena = +5.

¢ Any b + 0 divides 0.

* Ifalb and blc, then alc: 11|66 and 66/198 = 11]198

* If blg and b|h, then b|(mg + nh) for arbitrary integers m and n.

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an infeger quatient
an integer remainder r that obey the following relaticnship: The remainder r is often referred to as a residu

a=qgntr D=r<nq=ahn|

where | x | is the largest integer less than or equal to .

n in n qn a g+ 1n
| | | | | | |
}. | | | | | |
(a1} General relationship r
1=
| : : : ———
0 15 M 45 il ] '."li
=2x15 =3=15 =d=15 =Ex15

(b Exomple: 7= (4 =151 + 10 1
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Primality

Prime Numbers

« Aninteger p = 1 is prime number, if its divisors are +/- 1 and +1 p
« Any non negative integer a = 1 can be factored in the form as qa = pffl Y Pgl Wooea e W P?"
« where pl =p2 = _. = pt are prime numbers and whers each ais a
positive integer.
+ This is known as the fundamental theorem of arithmetic
« Examples: 91 =7 x13, 3600 =24 x 32 x 52

Miller-Rabin Algorithm

+« also known as Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-Rabin test
+« fypically used to test a large number for primality

Two Properties of Prime Numbers

= [f pis prime and a is a positive integer less than p, then a® mod p=1, ifand only ifeitheramodp=1ora
modp=-Tmodp=p—1
* Letp be a prime number greater than 2. We can then write p - 1 = 2% with k = 0, g odd

Algorithm

TEST (n)

1. Find integers %k, g, with kx> 0, g odd, so that
(n — 1= 2%q);

Select a random integer a,1 < a < n — 1;

if a%modn = 1 then return('inconclusive");

for 7 = 0 to Kk — 1 do

if a°“modn=n— 1 then return("inconclusive");

. returni "compos ita" b

+

*

oo o W B

Chinese Remainder Theorem

the CRT says it is possible to reconstruct integers in a certain range from their residues modulo a set of
pairwise relatively prime moduli

Formula
'
M = Hm,
i=1
where the m; are pairwise relatively prime; that is, ged(my, mj;) = 1for 1 =i, j = k,
and i # j.

Relatively Prime

« Two integers are relatively prime, if their only common positive integer factor is 1
« Example: 8, 15 are relatively prime because positive divisors of 8 are 1, 2, 4, 8. Positive divisors of 15 are
1, 3, 5, 15. Common positive factor = 1

TWO ASSERTION OF CRT

The mapping of Eguation (E.7) is a one-to-one correspondence (called a
bijection) between Fyy and the Cartesian produoct e, =0 g =0 o0 =0 g .
That s, for every integer A such that 0 = 4 = A there is a I.II'II-.]IJE' E-tuaple
(. &, - . - g with i} = a; == ma; that represents it. and for every such E-tuplea
(. &, - . - . @), there is a unigue inteser A in &

. Dperaticns performed on the elements of e can be egquivalently performed
on the corresponding A-tuples by performing the operation indsppendently in
each coordinate position in the appropriate sysiam.

3]
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The following 1s an example of a set of equations with different moduli:

Vi, *53@0‘53)1 ittt e )
) x‘&émf’)».,‘-".Efus‘;‘;‘::(:p}.;@_w\'7'."??;','"‘ iy
SHTY B

The solution to this set of equations is given in the next section; for the moment, fivte that
the answer (o this set of equations is x = 23. This value satisfies all equations: 23 = 2 (mod 3),
23=3 (mod 5), and 23 = 2 (mod 7).

Solution
The solution to the set of equations follows these steps:

L. Find M = m) X myx - % m. This is the common modulus,

2 Find M = Mimy, My =Mims, ..., My= Mim,,

3. Find the multiplicative mverse of My, My, ..., My using the corresponding moduli (m,,
My o). Call the inverses M, My, !

4. The solution (o the simultanequs equations is

L= (dl XM! XMl-l +azxM2}( M{l + ol )%'MiXMk.l) mod M

Note that the set of equations can have a solution even if the moduli are not relatively prime
but meet other conditions. However, in cryptography, we are only interested in solving equations
with coprime moduli

From the previous example, we already know that the answer is x = 23, We follow the four Steps.
I M=3%x5%x7=105
2. M =105/3=35 My=105/5=21, My=105/7=15
3. The inverses are M, =2, M, = 1, My - 1
4 x=(2x35x243%2X142%15% 1Ymod 105 =23 mod 105
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Modular Arithmetic
The Modulus

If @ is an integer and » is a positive integer. we define @ mod n to be the remainder
when & is divided by ». The integer » is called the modulus. Thus, for any integer a,
we can rewrite Equation (4.1) as follows:

a=gn-+tr O=r<n:g= |an]

a=|an| X n+ (amodn)

11 mod7 = 4; —11mod7 =3

Two integers a and b are said to be congruent modulo ». if (0 mod n) =
(b mod n). This is written as a = b (modn).”

73 = 4 (mod 23); 21 = —9 (mod 10)

Note that if a = (0 (mod n), then nla.

Properties of Congruences

. a=b(modn)ifni(a— b).
a = b (mod n) implics b = a (mod n).

=

b

3 a=b(medn)and b = ¢ (mod n) imply g = ¢ {mod n).

To demonstrate the first point, if ni{a — &), then (a — b) = kn for some k.

S0 wc can writc @ = b + kn. Thercefore, (a mod n) = (remainder when b + &n is
divided by 1) = (remainder when b is divided by 1) = (b mod n).

23 = 8 (mod 5) because 23— 8=15=5%x3
—11 = 5{modB8) becsuse 11 —5=-16=E8 X (-2)
81 = 0 (mod27)  because 81 — 0 =81 =27 X 3

Modular Arithmetic Operations

I. [([amodn) + (bmodn) modn = (a + b)) mod n
2. ([amodn) — (bmod n)| modn = (a — b)mod n
I |(amodn) X (bmodn)| modn = (a > b) mod n

We demonstrate the first property. Defline (a mod n) = 7, and (b mod n) = .
Then we can write a = r, + jn for some integer j and b = r, + kn for some integer

k. Then
fa+bymodn = (rp, + jn + rp + kn)modn
=(rg +rp+ (k + Jn)modn
= (r, +~ rp)modn

= [(amod n) + (bmod n)|mod n

Examples
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11mod8 =3;15mod8 =7 To find 117 mod 13. we can proceed as follows:
[(11:1 m.:: - +d(815 mz:d S)erof - PmedB=2 1P = 121 = 4(mod13)

TR Db L 11* = (11%)? = 42 = 3 (mod 13)

[(11 mod8) — (I5mod8)|mod B8 = —4mod8 =4 IW=11%x4%x3=132=2 (mod 13)

(11 — 15)mod & = —4mod 8 = 4

[(11 mod 8) > (15mod 8)| mod 8 = 21 mod8 = 5
(11 X 15)mod 8 = 165mod 8 = 5§

Properties of Modular Arithmetic
set of residues, or residue classes (mod n)

Define the set Z,, as the set of nonnegative integers less than n:

Zi=40;15 05 (3:—1))

precise, each integer in Z, represents a residue class. We can label the residue classes
(mod n)as|[0], [1]. [2], ... ,[72 — 1], where

[r] = la: a is an integer, a = r (mod n))}

The residue classes (mod 4) are
[0l ={....,—16,—12,—8,—4,0,4.8,12, 16, ...}
=1 A5, -"7,-3, 5591317, . |
21 =1{....—14,-10,—6,-2,2,6,10,14,18, ...}
Bl = 13,9 -5 1. 3. 7. 111519, ...}

reducing k modulo n.
Finding the smallest nonnegative integer to which k is congruent moduio n

if(a + b) = (a + c)(modrn) then b = c(modn)
(5 +23) = (5 + 7T)(mod8); 23 = 7(modB)

if (a < b) = (a ¥ c)(mod n) thend = ¢ (mod n) ifais rclatively primc to n

Properties of Modular Arithmetic for Integers in Zn

s (w+x)ymodn = (x + wymodn
Commutative Laws
(w <xx)ymodn — (x + wimodn

[(w+x)+ yImodn = [w+ (x + yv) modn
[(w>xx) < ylmoda — [w < (x X y)| modn

Associative Laws

Distributive Law wx(x+wmodn = [(w X x)+ (WX ymodn
. O+ w)modn = wmod n
Identities
(1 Xw)modn = wmodn
Additive Inverse (-w) Forcach we Z,, there exists aa zsuch that w + z = Omod n
N s b= &M rilberrees e Belloelanlao =
- o ] = = - = = T
Ln ] o a = = = =] = T
| a = = = = 2 rd =
= r_: 3 = = = - L= a
C | e 4 = = 7 o L} =
E & = = Ed 5] 1 = ES
= = = Ed [ 1 = £] &
= = T 5] 1 S 3 El =
- T =] 1 = = = = =
of S o O BT e T S
- L) ] = = - =5 = £ = bt
i =) = o o [ 7] [ = a -
1 =] ] = = ] = = T i ) —
= [ = ] =] 7] = =4 = = =
3 e El = 1 - = = = 3 = 3
E [ ] =i 0] = {n ] =4 [ =i = 3
= = = = £ ] L = = 5 3 =
= L] = = = L] = =4 = = =
- L] ¥ = = = C | = | | - [ ] ¥
< el el e a e o ey 5 (o) Fckditire s gkl ool ke el e

I serses rrecsimies &3
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GROUPS, RINGS AND FIELDS

Groups, rings, and fields are the fundamental elements of a branch of mathematics
known as abstract algebra, or modern algebra. In abstract algebra, we are concarned
with set= on whose elements we can operate algebraically: that is. we can combine
two elements of the set, perhaps in several ways. to obtain a third element of the set.
These operations are subject to specific rules, which define the nature of the set. By
comnvention, the notation for the teo princdpal classes of operations on et elements
iz wsually the same as the notation for addition and multiplication on ordinary nam-
bers. Howewver, it is important to note that, in abstract algebra, we are nod limited to
ordinary arnthmetical operations. All this should become clear as we procead.

Groups

A proup O sometimes denoted by (07, = |.is a set of ebements with a binary operation
denofed by * that associates to each ordered pair (2. b) of elements in 7 an element
(@ =B} in 7. such that the following axioms are obeyed:*

(Ady Closare: If @ and b belong to 5. then o = b is also in (5.
A2y Associative: @By = (@=b)=c foralla b, cin (5.
(A3 Identity elemeni: There is an element & in {5 such

thata-e — e~a — a for all @ in 5.

{Ady Imverse elemeni: For each a in 5. there is an element @’ in €7
such thatg~a" — a"~a — &.

If a group has a finite number of elemants. it is referred to as o Anite proop.
and the order of the group is egual o the number of elements in the group.
Dtherwise, the group is an infindbe promp.

A prowp is said to be abeliam if it satisfies the following additional conditiom:

A S o s s ar B o= &g for all a5 im 5.

The set of integers | positive, negative, and O ander addition is an abelian grooag.
The ==& of nonrero real numbers nnder multiplication is an abelian group. The set
Sp from the preceding example is a groap but ot an abelian group for a0 = Z_

When the gproup operation is addition, the identity element is 0 the inverss

glement of @ is —r. amd subtraction is defined with the following rule:
@ — b =g+ [(—h)
Cyorns aeoorr We define exponentiation within a groap as a repeated appli-
caticn of the gronp operator, so that a® — g *a * o, Furnthermore, we define a — ¢
as the identity element, and @ — (@)%, where a’ is the inverse element of a
within the gronp. A group & is cyclic if every element of (7 is a power a® [k is an
integer) of a fixed element @ = &5 The element a is said (o penerate the group o5
or o e a penerator of G A cyclic group is alwayvs abelian and may be finite or
infinite.

The additive group of integers is an infinite cyclic group generated by the
2lement 1. In this case, powers are interpreted additively, so that s is the sth

power of 1.

Rings
A rimg KN, sometimes denoted by (&, +., =}, is 2 =21 of elemeants with two binary

operations, called addirion and moftiplicarion.® such that for all a. &, ¢ in & the
folloaing amioms are ocbeyedl

(AT-A5) % is an abelian group with respect to addition: that is, & satishies
axioms Al throoagh A5 For the case of an additive group, we denole
the identity element as 0 and the inverss of @ as —r.

(N1 s e mnder muoldplicatons If o and & b=long to N then abr is also
i 42
(M2 Assocatvity of moltplEcation: alfbc) — (i for all a, & c in R
(M3 IMstribotive laawss aifk + ¢ =— ab + ac forall a. & cin &

o + By — ac + Bo for all a, b, cin K.

In esmance, a ring i=s a =gt in which we can do addition, sublraction
[@a — & = a + [(—b)]. and muliaplicaticn withowt leavinge the set.
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Weith respect to addition and multiplication, the set of all s-sgquare Mmatrices over
the real numbsrs is a ring-

A ring B said to e ormmmautative i il satsfies the followine additisonal oondsbisonm:
(M4 Conmmuiativity of muoltiplication: ab — Sa for all @& in &

Let § be the set of even integers (positive, negative. and ) under the wonal opera-
tions of additkton and multiplication_ % is a commutative ring. The set of all s-squuare
mainices defined in the preceding example = ot 2 commuatative ring.

The set Fpof integers [k, 1, ... n» — 1} topether with the arnthmetic operations
muedhelo 2 is 8 commutative ring | Table 4375

Mext. we define an intepral domain . which is a commutative ring that obeys the
forl boaving aorioams.

(M5 Muoldplicative identity: There is an element 1 in & sach
that gl — 1la — a forall ain &

(MG MNo zere divisors: If @. & in & and afr — 10, then eithera — 0
or & o=— [

Let & be the set of intepers, positive, negative, and 0, under the usual operatiomns
of addition and multiplication. & is an integral domain.

Fields

A field Fsometmes denoded by [, 0 =] s a set of elemenis with tao binary ofssra-
tions. called addirion and maliiplicarion, such that for all 2. b, ¢ in & the following
axioms are abeyed.
(AL-NIGY Fis an intepral domain: that is, Fsatisfies axioms Al throagh A5 and
AL throwmgh KRG

(T Multiplicative imverse: For each a in Foexcept O, thiere is an element

a Yin Fsoch that ga ! — (@ Ve — 1.

In essence, a field is a ==t in which we can do addition, subdraction., muaktpdicateon.
and |:|.i1.'i5i|:l:1 without leaving the set Division is defined with the following rale:
Ay — @b

Familiar examples of fields are the rational numbers, the real numbers, and the
complex numbers. Mote that the set of all integers is not a field, because mot
avery element of the set has a multiplicative inverse; in fact, only the elements 1
and —1 have multiplicative inversaes in the integers.

Figure 4.2 summarizes the axioms that define groups, rings, and fields.

(A1) Closure under sddition; If @ and b belong to 5, then @ + bisalsoin §
E‘ a (A2) Associativity of addition: atib+ch=la+h+cloralla b cind
=1 £ g (A3) Additive identity: There is an element 0 in R such that
s =< & a+0=0+a=aforalain§
¥ 0 ! (Ady Additive inverse: For each @ in 5 there is an element —a in §
£ %) E< 2 such that @ + (~a) = (~a) +a =10
E § & < (A5 ) Commutativity of addition: atb=b+aforalla binf
'8 E (M1} Closure under multiplication: If @ and b belong to &, then ab is also in §
3 = 8 (M2} Associativity of multiplication: aibe) = (ah)c foralla, b, cin ¥
I ?‘ - (M3 Distributive laws: alb + c)=ab + acforalla b, cin§
E {g+Mc=ac+bcforalla b, cin¥
(M4 Commutativity of multiplication: ab = bhaforalla, bin §
(M3} Multiplicative identity: There is an element | in ¥ such that
al=la=aforallain§
(M6} No zero divisors: Ifa, bin¥and ab =0, then either
a=0ork=10
(M7} Multiplicative inverse: Ifa belongs to S and a0, there is an

elementa 'in §suchthatas '=a la=1
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FINITE FIELDS OF THE FORM GF(p)

The Anite field of order p' is generally writien GF{p"): GF stands for Gabkois
fizld. in honor of the mathematician who first stedied finite felds Two special cases

are of interest for our purposes. For s — 1. we have the finite feld GF(p); this finite
freld has a different strmaciure than that for finite fGelds with 7 == 1 and is stwdied in
this section. In Section 4.7, we look at finite fields of the form GFC27).

Finite Fields of Order p
For a given prime, . we defime the finite field of order p. GF{p). as the s=t &, of

imtegers {L 1. ___.p — 1} toeesther with the arnithmetic operations modualo .
Recall that we =showed in Section 4.5 that the sen &, of integers
o1, ... .m — 1], topether with the anithmetic operations meodulo s is a commuata-

tive ring | Fable 4 3). We further observed that any iInteger in &g has a multsplicative
inverse if and only if that integer i=s relatively prime o »r [=s=ee discussion of
Eqguation (4.5 If & is prime. then all of the noneero integers in 7, are relatively prims
tex r2_ amd therefore there exisis a multiplicative imverse for all of the noneere ntegers
in ., Thuos, for Z, we can add the following properties o those listed in Table 4 35

BAm Miplicative inverse {w— ) Foreach wa @, w v 0, there exisis a
T stl.lch that w = § = 1 (mawud =)

The simplest fAinite field 1= GF(2). s arithmetic opesraiions are easily smmmanized-

+ | i 1 = | o 1 ol B .
o | o a2 o | o o W] 5] —
111 o 1 o 2 1 1 1
Acdditiomn

FAultiplication Imversss

Im this case, addition = eguivalent o the exclusive-L03H ( {0V H) opsration, and
multplication is eguivalent o the logical AT operatioom.

Firedimp the MMolthiplicative Inverse i SR )

It is easy o find the multiplicative inverss of an element in GF(E) for soall values of
7. on simply coonstrmect 8 muoaltiEplication table, sach as shown i Tabde 4. 50, and the
desired resulitl can be read directly. Howesear, for large valeses of = this approach is
novt grracitscal .

Tadbille 4.5 S rith rmeetic im TSR T )

- o I = 3 = =] &
o o I = 3 L] =] &
] ] = 3 4 5 L] 0
= = = = 5 [ i 1
= = 4 5 [ I 1 =
4 =1 = [ L) 1 = =
= = = ) 1 = 3 e
= (=] o 1 = 3 e =]
=) A cdlitican mociubo 7
s — a1
= =] I = 3 = =] & 1) (=] -
o L= o ) ) i L1 ] 0 1 = L
] o I = 3 = =] & = = L
= [=] =X E] [ L =] = 3 =4 5
= [=] ] [ 2 5 1 4 ] = 2
4 o =4 L 5 2 £ = 5 = 3
= (] = 3 L ] 4 = [ ] 5
= = = 3 = = = _ =) Mddiire e o el el B
i) Mulbtiplicaticen mmocddabe 7 invsrses orvsadulos T
POLYNOMIAL ARITHMETIC

Three classes of polynomial arithmetic:
= Ordinary polymeomial arithmetic, using the basic rules of alpebra.

= Polyvnomial arithmetic in which the arithmetic on the coefificients is perfornmed
meodhulo p ;- that is, the coefficients are in GF(pj).

* Pobynomial arithmetic in which the coefficents are in GFp), and the pohnomiak
are defined modulo a polynomaal mix) whose highest power is some integer n.
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¥ g w2 + X xd 4 wE = Z
&= (X —x & 013 - (- x & 13
Y ePt _x oa 3 = + x = 1
ml Additien 1 e Sl Lrese 16 oon
e xE + 2 x 4+ X
mw xrt— xr & 1] :3—:4-].'.-"'.::'-;:1 &+ 2
3 T & & = —xta x
—x* _ — X X x & 2
=¥ 5 x* + 2 2 _ZEp e 2
=¥ + 3 _Fr e 32 x
o Ml oltiplic mliiem id) Divisiom
Fipwre 4.3 Examples of Polynomisl Arithmetic

A polymomial fix) over a field ¥ is called irmedwdble if and only if fx) canmot
be expressed as a product of two polyvnomials, both over /. and both of degree lower
than that of ffx). By analogy to integers. an irreducble polymnomial is also called a

primee polvmomiad

The polyvnomial® fix) — x* + 1 over GF(2) is reducible. becamss
xt+ 1l —fx + 1x® + x* + x + 1)

Consider the polynomial fix)y — 1 + x + 1.0t is clear by inspection that x is not
a factor of Tx). We easily show that x + 1 is not a factor of fix):
4+ x
x + 123 + x + 1
0 + x
x +ox

=+ x

Thus, fix) has no factors of degree 1. But it is clear by inspection that if fx) is
reducible, it must have onse factor of degree 2 and one factor of degree 1.
Therefore, flx) is irreducble.

=7 = xF = 1 = 3 = x + 1
+ 2 = o + 1F
= - " =
(AW e B T ]
=T -+ x — a¥ * 4+ = #+ 1
—_ == + = + BB
xT -+ x= -+
ks 0 55 oo b s ctiecen
= + - + '  a” 4+ |
- L + = + 11
= - x  x e +
== + xF + x° + x¥ + T =
- T +xF ¢ =T 4 B + x® ¢
o + ¥ + xt =+ 1
o Pl pndbl i il daos s
=4 &
_l.—="+l+l__,|"'l._'l.-_" = xF = = + = + = + 1
= - x= = x®
= + x -+ 1
== + = + 1

Ll It o

Figure 4 Exmmples of Fodymomiad Srithomeetic oscer TS F L2
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(I

i
oto
i
100
101
110
111

(i)
(0
il
1
100
101
1o
§h

FINITE FIELDS OF THE FORM GF(2"

6 Arithmetic in GF[2%)
0 i 00 anl Lo 100 110 111
3 a 1 2 3 4 5 & T
0 o 1 2 3 4 5 [ T
1 1 (] 3 2 5 4 T &
2 2 3 [u] 1 [ 7 4 x5
3 . 2 1 [u] 7 [ £ 4
4 4 5 [ T 1] 1 2 3
5 5 4 7 & 1 1] a 2
[ & T 4 £ 2 3 [u] 1
7 7 & £ 4 I 2 1 [u]
(@) Acddibion
(L 1] JLE]Y 010 orl 10 (B1]] 110 111 w - 1
LS il 1 z I 4 ] it T '| o
il il 0o il 0o (5] 0 0o il
1 ] 1 z 3 .| 5 T T : : :
L < K O X —
T il ? 4 [ 1 1 7 5 _ - .
3 ] 3 6 5 7 ] 1 7 3 3 &
1 i) F] 3 7 3 7 5 1 - - L
5 0 5 1 4 . T 3 fr 5 5 2
f il f T 1 5 3 2 4 f [ 3
T ] 7 5 2 1 fr 4 ] T T 4
(B} Mulliplication (o) Additive and mullipicalive
imverses
Polynomial Arithmetic Modulo (¥ + x + 1)
L L1} a1 01 100 1] 110 111
+ 1] | x ¥+ 1 1 r4+1 Py 4+ r+i
0 0 l X T+1 ¥ r+i r+i r+r+1
i 1 [ r+1 x £+1 T rt+r+l r+tr
X X x+1 ] | r+r rix+l ¥ Tt
L r+1 T 1 0 T+r+1 4+ r+1 T
X 1 T+l r +x T+ r+l o 1 X z+1
P+ 1 F+1 r 24+x+l C o+ 1 ] T+ 1 X
r+x £+ f+r+l r T+ 1 X X+ 1 0 1
r+x+l | P+t r+zx r o+l r r +1 X 1 0
{2} Addition
000 (o1 1o i1 100 101 110 111
% 0 1 x it L 2+ Xex B4a+d
[ 1} 0 i} 0 0 0 0 0
1 ] | 1 xt+1 © r+1 P4+ r+r+1
X 0 X r r+zx X1 l P+r+l r+1
1+ 1 0 I+ r+1 r+1 r+1+l X 1 I
¥ 0 r x+1 r+xtl ¥+ ¥ P+l |
r+l a £+1 | s I rExr+l : g £ r +1
r+x 0 r+x rt+r+l 1 ¥+ 1+ 1 X r
r4r+l 0 rtrtl r+1 x I r+1 r X+

() Multiplication
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Fermet & Euler Theorem
« play important roles in public-key cryptography
Fermat’'s Theorem

If p is prime and a is a positive integer not divisible by p, then
@’ ' = 1(mod p)

Proof:

« Consider the set of positive integers lessthan p: {1, 2, 3, ___, p-1}

+  Multiply each element by a, modulo p to get the set

o X={amodp, 2amod p, ... (p-1)a mod p}

Mone of the elements of X is equal to zero because p does not divide a

a Yp— 1) =(p— 1) {medp)

Example:
a=7,p=19
7° = 49 = 11 (mod 19)

7t =121 = 7 (mod 19)
7% = 49 = 11 (mod 19)
7% = 121 = 7 (mod19)
@ 1=T8=76x7=7x11=1(mod19)

An alternative form of Fermat's theorem
If pis prime and a is a positive integer, then F

p=Sa=3 af =3 =243 = 3(modS) = a(mod p)
p=3S5a

Euler's Theorem

Euler’s totient function (¢ (n))

« fora prime numberp, ¢ (pl=p-1
« for two prime numbers where p # q,

¢(n) = dpqg) = dp) < dlg)=(p -~ 1) x (g — 1)

o) =ad@) X KN=3-1)XxO-1)=2x6=12
where the 12 integers are {1,2,4,5,8,10,11,13,16,17, 19, 20}.

Therefore, we know that the (p - 1) elements of X are all positive integers with no two elements equal
We can conclude the X consists of the set of integers {1, 2, ..., p- 1} in some order
Multiplying the numbers in both sets (p and X) and taking the result mod p yields

axX2ax ... X(p-Da=[(1x2x ... ¥ (p— 1)]{modp)

We can cancel the (p -1)! term because it is relatively prime fo p, which prooves the theorem

10 a” = 10° = 100000 = 10(mod3) = D(mad 5) = a(mod p)

+ the number of positive integers less than n and relatively pimeton. ¢ {1 =1
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To see that d(n) = d(p) < &(g).consider that the set of positive integers less that n
istheset {l. .., (pg — 1)}.The integers in this set that are not relatively prime to n
are the set |p,2p, ...,(¢ — 1)p) and the set {gq. 2q, ..., (p — 1)g}. Accordingly.

dn)=(pg-1) —[(g-1)+ (p—1)]
=pq—(ptgq)+l
=(p-Dx(g-1)
= ¢(p) * d(q)

Euler's Theorem

'") =
» for every a and n that are relatively prime a® l(mod n)

Hmy+1
» altemative form ¢ = a(mod n)

Proof:

Zonsider the set of positive integers less thann that are relatively prime to n, labeled as

R =[x, x5 ..., %4(n))

That is, each element x; of R is a unique positive integer less than n with
ged(x;, n) = 1. Now multiply cach[clcmcnt by a, modulo n:

S = {(ax; mod n). (ax;mod n), _, (ax,,, mod n)|

The set S is a permutation® of R. by the following line of reasoning:

1. Because a is relatively prime to nn and x; is relatively prime (o n. ax; must also
be relatively prime to n. Thus, all the members of § are integers that are less
than » and that are relatively prime to »|

2. There arc no duplicates in §. Refer to Equation (4.5). If ax; mod n
= ax; mod n,thenx; = x;.

/) !
Therefore,
&(n) bin)
H(ax,mod n) = Hx,
i=1 i=1
#ln) $(n)

[]axi = []xi(mod n)
i1

i-1

hin) Hin)

a®® x| [1x: | = []xi(mod n)
=1

=1
a®™ = 1(mod n)

which completes the proof. This is the same line of reasoning applied to the proof of
Fermat's theorem.




