
Chapter 2: A Model of Distributed Computations

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 1 / 1



Distributed Computing: Principles, Algorithms, and Systems

A Distributed Program

A distributed program is composed of a set of n asynchronous processes, p1,
p2, ..., pi , ..., pn.

The processes do not share a global memory and communicate solely by
passing messages.

The processes do not share a global clock that is instantaneously accessible
to these processes.

Process execution and message transfer are asynchronous.

Without loss of generality, we assume that each process is running on a
different processor.

Let Cij denote the channel from process pi to process pj and let mij denote a
message sent by pi to pj .

The message transmission delay is finite and unpredictable.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 2 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

The execution of a process consists of a sequential execution of its actions.

The actions are atomic and the actions of a process are modeled as three
types of events, namely, internal events, message send events, and message
receive events.

Let ex
i denote the xth event at process pi .

For a message m, let send(m) and rec(m) denote its send and receive events,
respectively.

The occurrence of events changes the states of respective processes and
channels.

An internal event changes the state of the process at which it occurs.

A send event changes the state of the process that sends the message and
the state of the channel on which the message is sent.

A receive event changes the state of the process that receives the message
and the state of the channel on which the message is received.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 3 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

The events at a process are linearly ordered by their order of occurrence.

The execution of process pi produces a sequence of events e1
i , e2

i , ..., ex
i ,

ex+1
i , ... and is denoted by Hi where

Hi = (hi , →i )

hi is the set of events produced by pi and
binary relation →i defines a linear order on these events.

Relation →i expresses causal dependencies among the events of pi .

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 4 / 1



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

The evolution of a distributed execution is depicted by a space-time diagram.

A horizontal line represents the progress of the process; a dot indicates an
event; a slant arrow indicates a message transfer.

Since we assume that an event execution is atomic (hence, indivisible and
instantaneous), it is justified to denote it as a dot on a process line.

In the Figure 2.1, for process p1, the second event is a message send event,
the third event is an internal event, and the fourth event is a message receive
event.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 6 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

p

p

p

1

2

3

e

e

e
3

2

1
e1 e1 e1 e1

e2 e2 e2 e2

e2

e
3

e
3

e
3

1 2 3 4

1 2 3 4

5

2

3

4

5

6

1

time

Figure 2.1: The space-time diagram of a distributed execution.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 7 / 1



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

Concurrent events

For any two events ei and ej , if ei 6→ ej and ej 6→ ei ,
then events ei and ej are said to be concurrent (denoted as ei ‖ ej).

In the execution of Figure 2.1, e3
1 ‖ e3

3 and e4
2 ‖ e1

3 .

The relation ‖ is not transitive; that is, (ei ‖ ej) ∧ (ej ‖ ek) 6⇒ ei ‖ ek .

For example, in Figure 2.1, e3
3 ‖ e4

2 and e4
2 ‖ e5

1 , however, e3
3 6‖ e5

1 .

For any two events ei and ej in a distributed execution,
ei → ej or ej → ei , or ei ‖ ej .

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 11 / 1



Distributed Computing: Principles, Algorithms, and Systems

A Model of Distributed Executions

Logical vs. Physical Concurrency

In a distributed computation, two events are logically concurrent if and only
if they do not causally affect each other.

Physical concurrency, on the other hand, has a connotation that the events
occur at the same instant in physical time.

Two or more events may be logically concurrent even though they do not
occur at the same instant in physical time.

However, if processor speed and message delays would have been different,
the execution of these events could have very well coincided in physical time.

Whether a set of logically concurrent events coincide in the physical time or
not, does not change the outcome of the computation.

Therefore, even though a set of logically concurrent events may not have
occurred at the same instant in physical time, we can assume that these
events occured at the same instant in physical time.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 12 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

Models of Communication Networks

There are several models of the service provided by communication networks,
namely, FIFO, Non-FIFO, and causal ordering.

In the FIFO model, each channel acts as a first-in first-out message queue
and thus, message ordering is preserved by a channel.

In the non-FIFO model, a channel acts like a set in which the sender process
adds messages and the receiver process removes messages from it in a
random order.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 13 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

Models of Communication Networks

The “causal ordering” model is based on Lamport’s “happens before”
relation.

A system that supports the causal ordering model satisfies the following
property:

CO: For any two messages mij and mkj , if send(mij) −→
send(mkj), then rec(mij) −→ rec(mkj ).

This property ensures that causally related messages destined to the same
destination are delivered in an order that is consistent with their causality
relation.

Causally ordered delivery of messages implies FIFO message delivery. (Note
that CO ⊂ FIFO ⊂ Non-FIFO.)

Causal ordering model considerably simplifies the design of distributed
algorithms because it provides a built-in synchronization.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 14 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

Global State of a Distributed System

“A collection of the local states of its components, namely,
the processes and the communication channels.”

The state of a process is defined by the contents of processor registers,
stacks, local memory, etc. and depends on the local context of the
distributed application.

The state of channel is given by the set of messages in transit in the channel.

The occurrence of events changes the states of respective processes and
channels.

An internal event changes the state of the process at which it occurs.

A send event changes the state of the process that sends the message and
the state of the channel on which the message is sent.

A receive event changes the state of the process that or receives the message
and the state of the channel on which the message is received.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 15 / 1

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

. . . Global State of a Distributed System

A Consistent Global State

Even if the state of all the components is not recorded at the same instant,
such a state will be meaningful provided every message that is recorded as
received is also recorded as sent.

Basic idea is that a state should not violate causality – an effect should not
be present without its cause. A message cannot be received if it was not sent.

Such states are called consistent global states and are meaningful global
states.

Inconsistent global states are not meaningful in the sense that a distributed
system can never be in an inconsistent state.

A global state GS = {
⋃

iLSxi

i ,
⋃

j,kSC
yj ,zk

jk } is a consistent global state iff

∀mij : send(mij) 6≤ LSxi

i ⇔ mij 6∈ SC
xi ,yj

ij

∧

rec(mij) 6≤ LS
yj

j

That is, channel state SC
yi ,zk

ij and process state LSzk

j must not include any
message that process pi sent after executing event exi

i .

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 19 / 1



Distributed Computing: Principles, Algorithms, and Systems

. . . Global State of a Distributed System
An Example

Consider the distributed execution of Figure 2.2.

Figure 2.2: The space-time diagram of a distributed execution.

3

4

1

2

time

e e e

e

e e e e

e e

e

12

e

e e

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3

1
3
2 3 4 5

1 2

m 21m

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 20 / 1



Distributed Computing: Principles, Algorithms, and Systems

. . . Global State of a Distributed System

In Figure 2.2:

A global state GS1 = {LS1
1 , LS3

2 , LS3
3 , LS2

4} is inconsistent
because the state of p2 has recorded the receipt of message m12, however,
the state of p1 has not recorded its send.

A global state GS2 consisting of local states {LS2
1 , LS4

2 , LS4
3 , LS2

4}
is consistent; all the channels are empty except C21 that
contains message m21.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 21 / 1



Distributed Computing: Principles, Algorithms, and Systems

Cuts of a Distributed Computation

“In the space-time diagram of a distributed computation, a cut is a
zigzag line joining one arbitrary point on each process line.”

A cut slices the space-time diagram, and thus the set of events in the
distributed computation, into a PAST and a FUTURE.

The PAST contains all the events to the left of the cut and the FUTURE
contains all the events to the right of the cut.

For a cut C , let PAST(C ) and FUTURE(C ) denote the set of events in the
PAST and FUTURE of C , respectively.

Every cut corresponds to a global state and every global state can be
graphically represented as a cut in the computation’s space-time diagram.

Cuts in a space-time diagram provide a powerful graphical aid in representing
and reasoning about global states of a computation.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 22 / 1



Distributed Computing: Principles, Algorithms, and Systems

. . . Cuts of a Distributed Computation

Figure 2.3: Illustration of cuts in a distributed execution.

3

4

1

2

time

e e e

e

e e e e

e e

1
e

e

e e

C C

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3

1
3
2 3 4 5

1 2

2

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 23 / 1



Distributed Computing: Principles, Algorithms, and Systems

Models of Process Communications

There are two basic models of process communications – synchronous and
asynchronous.

The synchronous communication model is a blocking type where on a
message send, the sender process blocks until the message has been received
by the receiver process.

The sender process resumes execution only after it learns that the receiver
process has accepted the message.

Thus, the sender and the receiver processes must synchronize to exchange a
message. On the other hand,

asynchronous communication model is a non-blocking type where the sender
and the receiver do not synchronize to exchange a message.

After having sent a message, the sender process does not wait for the
message to be delivered to the receiver process.

The message is bufferred by the system and is delivered to the receiver
process when it is ready to accept the message.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 30 / 1

CSE
Highlight



Distributed Computing: Principles, Algorithms, and Systems

. . . Models of Process Communications

Neither of the communication models is superior to the other.

Asynchronous communication provides higher parallelism because the sender
process can execute while the message is in transit to the receiver.

However, A buffer overflow may occur if a process sends a large number of
messages in a burst to another process.

Thus, an implementation of asynchronous communication requires more
complex buffer management.

In addition, due to higher degree of parallelism and non-determinism, it is
much more difficult to design, verify, and implement distributed algorithms
for asynchronous communications.

Synchronous communication is simpler to handle and implement.

However, due to frequent blocking, it is likely to have poor performance and
is likely to be more prone to deadlocks.

A. Kshemkalyani and M. Singhal (Distributed Computing) A Model of Distributed Computations CUP 2008 31 / 1


	Main Talk
	Distributed Computing: Principles, Algorithms, and Systems


