
Candidate Elimination Algorithm

The candidate elimination algorithm incrementally builds the version space given a

hypothesis space H and a set E of examples. The examples are added one by one; each

example possibly shrinks the version space by removing the hypotheses that are

inconsistent with the example.

The candidate elimination algorithm does this by updating the general and specific
boundary for each new example.

You can consider this as an extended form of the Find-S algorithm.

Consider both positive and negative examples.

Actually, positive examples are used here as the Find-S algorithm (Basically they are

generalizing from the specification).

While the negative example is specified in the generalizing form.

Terms Used:

Concept learning: Concept learning is basically the learning task of the machine (Learn

by Train data)

General Hypothesis: Not Specifying features to learn the machine.

G = {‘?’, ‘?’,’?’,’?’…}: Number of attributes

Specific Hypothesis: Specifying features to learn machine (Specific feature)

S= {‘pi’,’pi’,’pi’…}: The number of pi depends on a number of attributes.

Version Space: It is an intermediate of general hypothesis and Specific hypothesis. It not

only just writes one hypothesis but a set of all possible hypotheses based on training data-

set.

Algorithm:

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

 if attribute_value == hypothesis_value:

 Do nothing

 else:

 replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

 Make generalize hypothesis more specific.

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Example:

Consider the dataset given below:

Algorithmic steps:

Initially : G = [[?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, ?],

 [?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, ?]]

 S = [Null, Null, Null, Null, Null, Null]

For instance 1 : <'sunny','warm','normal','strong','warm ','same'> and positive output.

 G1 = G

 S1 = ['sunny','warm','normal','strong','warm ','same']

For instance 2 : <'sunny','warm','high','strong','warm ','same'> and positive output.

 G2 = G

 S2 = ['sunny','warm',?,'strong','warm ','same']

For instance 3 : <'rainy','cold','high','strong','warm ','change'> and negative output.

 G3 = [['sunny', ?, ?, ?, ?, ?], [?, 'warm', ?, ?, ?, ?], [?, ?, ?, ?, ?, ?],

 [?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, ?], [?, ?, ?, ?, ?, 'same']]

 S3 = S2

For instance 4 : <'sunny','warm','high','strong','cool','change'> and positive output.

 G4 = G3

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

 S4 = ['sunny','warm',?,'strong', ?, ?]

At last, by synchronizing the G4 and S4 algorithm produce the output.

Output :

G = [['sunny', ?, ?, ?, ?, ?], [?, 'warm', ?, ?, ?, ?]]

S = ['sunny','warm',?,'strong', ?, ?]

Gamer
Highlight

