Mobile Communications

Chapter 2: Wireless Transmission

- Frequencies
- Signals, antennas, signal propagation
- Multiplexing
- Spread spectrum, modulation
- Cellular systems

VLF = Very Low Frequency

LF = Low Frequency

MF = Medium Frequency

HF = High Frequency

VHF = Very High Frequency

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency

UV = Ultraviolet Light

- Frequency and wave length
 - $\lambda = c/f$
 - wave length λ, speed of light c ≅ 3x108m/s, frequency f

Frequencies for mobile communication

- VHF-/UHF-ranges for mobile radio
 - simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellite communication
 - small antenna, beam forming
 - large bandwidth available
- Wireless LANs use frequencies in UHF to SHF range
 - some systems planned up to EHF
 - limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - weather dependent fading, signal loss caused by heavy rainfall etc.

 ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

Examples	Europe	USA	Japan
Cellular phones	GSM 880-915, 925- 960, 1710-1785, 1805-1880 UMTS 1920-1980, 2110-2170	AMPS, TDMA, CDMA, GSM 824- 849, 869-894 TDMA, CDMA, GSM, UMTS 1850-1910, 1930-1990	PDC, FOMA 810-888, 893-958 PDC 1429-1453, 1477-1501 FOMA 1920-1980, 2110-2170
Cordless phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930-1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 245-380
Wireless LANs	802.11b/g 2412- 2472	802.11b/g 2412- 2462	802.11b 2412-2484 802.11g 2412-2472
Other RF systems	27, 128, 418, 433, 868	315, 915	426, 868

Signals I

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values
- signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift φ
 - sine wave as special periodic signal for a carrier:

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

Fourier representation of periodic signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Signals II

- Different representations of signals
 - amplitude (amplitude domain)
 - frequency spectrum (frequency domain)

• phase state diagram (amplitude M and phase ϕ in polar coordinates)

- Composed signals transferred into frequency domain using Fourier transformation
- Digital signals need
 - infinite frequencies for perfect transmission
 - modulation with a carrier frequency for transmission (analog signal!)

- Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission
- Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna
- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna

ideal isotropic radiator

- Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole
 - → shape of antenna proportional to wavelength

Example: Radiation pattern of a simple Hertzian dipole

 Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power)

Antennas: directed and sectorized

 Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

sectorized antenna

Antennas: diversity

- Grouping of 2 or more antennas
 - multi-element antenna arrays
- Antenna diversity
 - switched diversity, selection diversity
 - receiver chooses antenna with largest output
 - diversity combining
 - combine output power to produce gain
 - cophasing needed to avoid cancellation

MIMO

- Multiple-Input Multiple-Output
 - Use of several antennas at receiver and transmitter
 - Increased data rates and transmission range without additional transmit power or bandwidth via higher spectral efficiency, higher link robustness, reduced fading
- Examples
 - IEEE 802.11n, LTE, HSPA+, ...
- Functions
 - "Beamforming": emit the same signal from all antennas to maximize signal power at receiver antenna
 - Spatial multiplexing: split high-rate signal into multiple lower rate streams and transmit over different antennas
 - Diversity coding: transmit single stream over different antennas with (near) orthogonal codes

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in vacuum much more in real environments (d = distance between sender and receiver)
- Receiving power additionally influenced by
- fading (frequency dependent)
- shadowing
- reflection at large obstacles
- refraction depending on the density of a medium
- scattering at small obstacles
- diffraction at edges

Real world example

Multipath propagation

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Time dispersion: signal is dispersed over time
 - interference with "neighbor" symbols, Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted
 - distorted signal depending on the phases of the different parts

Effects of mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
 - quick changes in the power received (short term fading)
- Additional changes in
 - distance to sender
 - obstacles further away
 - slow changes in the average power received (long term fading)

Multiplexing

- Multiplexing in 4 dimensions
 - space (s_i)
 - time (t)
 - frequency (f)
 - code (c)
- Goal: multiple use of a shared medium

Important: guard spaces needed!

Frequency multiplex

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time
- Advantages
 - no dynamic coordination necessary
 - works also for analog signals
- Disadvantages
 - waste of bandwidth if the traffic is distributed unevenly
 - inflexible

Time multiplex

A channel gets the whole spectrum for a certain amount of time

- Advantages
 - only one carrier in the medium at any time
 - throughput high even for many users

- Disadvantages
 - precise synchronization necessary

Time and frequency multiplex

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
- Example: GSM

Cognitive Radio

- Typically in the form of a spectrum sensing CR
 - Detect unused spectrum and share with others avoiding interference
 - Choose automatically best available spectrum (intelligent form of time/frequency/space multiplexing)
- Distinguish
 - Primary Users (PU): users assigned to a specific spectrum by e.g. regulation
 - Secondary Users (SU): users with a CR to use unused spectrum
- Examples
 - Reuse of (regionally) unused analog TV spectrum (aka white space)
 - Temporary reuse of unused spectrum e.g. of pagers, amateur radio etc.

Code multiplex

Each channel has a unique code

- All channels use the same spectrum at the same time
- Advantages
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Disadvantages
 - varying user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology

Modulation

- Digital modulation
 - digital data is translated into an analog signal (baseband)
 - ASK, FSK, PSK main focus in this chapter
 - differences in spectral efficiency, power efficiency, robustness
- Analog modulation
 - shifts center frequency of baseband signal up to the radio carrier
- Motivation
 - smaller antennas (e.g., λ/4)
 - Frequency Division Multiplexing
 - medium characteristics
- Basic schemes
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
 - Phase Modulation (PM)

Modulation and demodulation

Digital modulation

- Modulation of digital signals known as Shift Keying
- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth

- Phase Shift Keying (PSK):
 - more complex
 - robust against interference

Advanced Frequency Shift Keying

- bandwidth needed for FSK depends on the distance between the carrier frequencies
- special pre-computation avoids sudden phase shifts
 - → MSK (Minimum Shift Keying)
 - bit separated into even and odd bits, the duration of each bit is doubled
 - depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
 - the frequency of one carrier is twice the frequency of the other
 - Equivalent to offset QPSK
- even higher bandwidth efficiency using a Gaussian lowpass filter → GMSK (Gaussian MSK), used in GSM

Example of MSK

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used e.g. in satellite systems
- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded as one symbol
 - symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - more complex
- Often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK (IS-136, PHS)

- Quadrature Amplitude Modulation (QAM)
 - combines amplitude and phase modulation
 - it is possible to code n bits using one symbol
 - 2ⁿ discrete levels, n=2 identical to QPSK
- Bit error rate increases with n, but less errors compared to comparable PSK schemes
 - Example: 16-QAM (4 bits = 1 symbol)
 - Symbols 0011 and 0001 have the same phase φ, but different amplitude a. 0000 and 1000 have different phase, but same amplitude.

Hierarchical Modulation

- DVB-T modulates two separate data streams onto a single DVB-T stream
- High Priority (HP) embedded within a Low Priority (LP) stream
- Multi carrier system, about 2000 or 8000 carriers
- QPSK, 16 QAM, 64QAM
- Example: 64QAM
 - good reception: resolve the entire 64QAM constellation
 - poor reception, mobile reception: resolve only QPSK portion
 - 6 bit per QAM symbol, 2 most significant determine QPSK
 - HP service coded in QPSK (2 bit), LP uses remaining 4 bit

Spread spectrum technology

- Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference
- Solution: spread the narrow band signal into a broad band signal using a special code
 - protection against narrow band interference

- Side effects:
 - coexistence of several signals without dynamic coordination
 - tap-proof
- Alternatives: Direct Sequence, Frequency Hopping

Effects of spreading and interference

Spreading and frequency selective fading

narrowband channels

spread spectrum channels

DSSS (Direct Sequence Spread Spectrum) I

XOR of the signal with pseudo-random number (chipping sequence)

 many chips per bit (e.g., 128) result in higher bandwidth of the signal

- Advantages
 - reduces frequency selective fading
 - in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - soft handover
- Disadvantages
 - precise power control necessary

t_c: chip period

DSSS (Direct Sequence Spread Spectrum) II

FHSS (Frequency Hopping Spread Spectrum) I

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via pseudo random number sequence
- Two versions
 - Fast Hopping: several frequencies per user bit
 - Slow Hopping: several user bits per frequency
- Advantages
 - frequency selective fading and interference limited to short period
 - simple implementation
 - uses only small portion of spectrum at any time
- Disadvantages
 - not as robust as DSSS
 - simpler to detect

FHSS (Frequency Hopping Spread Spectrum) II

FHSS (Frequency Hopping Spread Spectrum) III

Software Defined Radio

- Basic idea (ideal world)
 - Full flexibility wrt modulation, carrier frequency, coding...
 - Simply download a new radio!
 - Transmitter: digital signal processor plus very fast D/A-converter
 - Receiver: very fast A/D-converter plus digital signal processor
- Real world
 - Problems due to interference, high accuracy/high data rate, low-noise amplifiers needed, filters etc.
- Examples
 - Joint Tactical Radio System
 - GNU Radio, Universal Software Radio Peripheral, ...

Cell structure

- Implements space division multiplex
 - base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Advantages of cell structures
 - higher capacity, higher number of users
 - less transmission power needed
 - more robust, decentralized
 - base station deals with interference, transmission area etc. locally
- Problems
 - fixed network needed for the base stations
 - handover (changing from one cell to another) necessary
 - interference with other cells
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

Frequency planning I

Frequency reuse only with a certain distance between the base stations

Standard model using 7 frequencies:

- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Frequency planning II

3 cell cluster

7 cell cluster

3 cell cluster with 3 sector antennas

Cell breathing

- CDM systems: cell size depends on current load
- Additional traffic appears as noise to other users
- If the noise level is too high users drop out of cells

