
http://www.tutorialspoint.com/cryptography/block_cipher_modes_of_operation.htm Copyright © tutorialspoint.com

BLOCK CIPHER MODES OF OPERATIONBLOCK CIPHER MODES OF OPERATION

In this chapter, we will discuss the different modes of operation of a block cipher. These are
procedural rules for a generic block cipher. Interestingly, the different modes result in different
properties being achieved which add to the security of the underlying block cipher.

A block cipher processes the data blocks of fixed size. Usually, the size of a message is larger than
the block size. Hence, the long message is divided into a series of sequential message blocks, and
the cipher operates on these blocks one at a time.

Electronic Code Book ECB Mode
This mode is a most straightforward way of processing a series of sequentially listed message
blocks.

Operation
The user takes the first block of plaintext and encrypts it with the key to produce the first
block of ciphertext.

He then takes the second block of plaintext and follows the same process with same key and
so on so forth.

The ECB mode is deterministic, that is, if plaintext block P1, P2,…, Pm are encrypted twice under
the same key, the output ciphertext blocks will be the same.

In fact, for a given key technically we can create a codebook of ciphertexts for all possible
plaintext blocks. Encryption would then entail only looking up for required plaintext and select the
corresponding ciphertext. Thus, the operation is analogous to the assignment of code words in a
codebook, and hence gets an official name − Electronic Codebook mode of operation ECB. It is
illustrated as follows −

Analysis of ECB Mode
In reality, any application data usually have partial information which can be guessed. For
example, the range of salary can be guessed. A ciphertext from ECB can allow an attacker to
guess the plaintext by trial-and-error if the plaintext message is within predictable.

For example, if a ciphertext from the ECB mode is known to encrypt a salary figure, then a small
number of trials will allow an attacker to recover the figure. In general, we do not wish to use a
deterministic cipher, and hence the ECB mode should not be used in most applications.

Cipher Block Chaining CBC Mode
CBC mode of operation provides message dependence for generating ciphertext and makes the
system non-deterministic.

Operation
The operation of CBC mode is depicted in the following illustration. The steps are as follows −

http://www.tutorialspoint.com/cryptography/block_cipher_modes_of_operation.htm
CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Highlight

CSE
Sticky Note
Hai,
Consider , that you have a table form of relating Plain texts , key and cipher texts.

So a plaintext of 60 bit should be splitted in to 6 10 bit blocks and each 10 bit block should get encrypted with a same key to convert itself in to cipher texts.

The Plain text to Cipher text is validated using the table

Load the n-bit Initialization Vector IV in the top register.

XOR the n-bit plaintext block with data value in top register.

Encrypt the result of XOR operation with underlying block cipher with key K.

Feed ciphertext block into top register and continue the operation till all plaintext blocks are
processed.

For decryption, IV data is XORed with first ciphertext block decrypted. The first ciphertext
block is also fed into to register replacing IV for decrypting next ciphertext block.

Analysis of CBC Mode
In CBC mode, the current plaintext block is added to the previous ciphertext block, and then the
result is encrypted with the key. Decryption is thus the reverse process, which involves decrypting
the current ciphertext and then adding the previous ciphertext block to the result.

Advantage of CBC over ECB is that changing IV results in different ciphertext for identical
message. On the drawback side, the error in transmission gets propagated to few further block
during decryption due to chaining effect.

It is worth mentioning that CBC mode forms the basis for a well-known data origin authentication
mechanism. Thus, it has an advantage for those applications that require both symmetric
encryption and data origin authentication.

Cipher Feedback CFB Mode
In this mode, each ciphertext block gets ‘fed back’ into the encryption process in order to encrypt
the next plaintext block.

Operation
The operation of CFB mode is depicted in the following illustration. For example, in the present
system, a message block has a size ‘s’ bits where 1 < s < n. The CFB mode requires an
initialization vector IV as the initial random n-bit input block. The IV need not be secret. Steps of
operation are −

Load the IV in the top register.

Encrypt the data value in top register with underlying block cipher with key K.

Take only ‘s’ number of most significant bits leftbits of output of encryption process and XOR
them with ‘s’ bit plaintext message block to generate ciphertext block.

Feed ciphertext block into top register by shifting already present data to the left and
continue the operation till all plaintext blocks are processed.

Essentially, the previous ciphertext block is encrypted with the key, and then the result is
XORed to the current plaintext block.

CSE
Sticky Note
INITIALIZATION VECTOR
An initialization vector (IV) is an arbitrary number that can be used along with a secret key for data encryption.
For example, a sequence might appear twice or more within the body of a message. If there are repeated sequences in encrypted data, an attacker could assume that the corresponding sequences in the message were also identical.
The IV prevents the appearance of corresponding duplicate character sequences in the ciphertext.

CSE
Sticky Note
XOR
The XOR operator outputs a 1 whenever the inputs do not match, which occurs when one of the two inputs is exclusively true. This is the same as addition mod 2.
Here is the truth table:
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0
Let's try it:
100111001011010100111010
XOR
010110100001101111011000

RESULT
110001101010111011100010

CSE
Sticky Note
1. An Initialization Vector of Random Bit is assigned as IV.
2. The Assigned IV is then XOR-ed with the Plain Text
3. The XOR-ed Plain Text is then encrypted with the help of a Key and converted to Cipher text.
4. At last, the reverse Process is done to retrieve the Plain text.

CSE
Sticky Note
https://www.youtube.com/watch?v=7t5uWEAUf_o

Similar steps are followed for decryption. Pre-decided IV is initially loaded at the start of
decryption.

Analysis of CFB Mode
CFB mode differs significantly from ECB mode, the ciphertext corresponding to a given plaintext
block depends not just on that plaintext block and the key, but also on the previous ciphertext
block. In other words, the ciphertext block is dependent of message.

CFB has a very strange feature. In this mode, user decrypts the ciphertext using only the
encryption process of the block cipher. The decryption algorithm of the underlying block cipher is
never used.

Apparently, CFB mode is converting a block cipher into a type of stream cipher. The encryption
algorithm is used as a key-stream generator to produce key-stream that is placed in the bottom
register. This key stream is then XORed with the plaintext as in case of stream cipher.

By converting a block cipher into a stream cipher, CFB mode provides some of the advantageous
properties of a stream cipher while retaining the advantageous properties of a block cipher.

On the flip side, the error of transmission gets propagated due to changing of blocks.

Output Feedback OFB Mode
It involves feeding the successive output blocks from the underlying block cipher back to it. These
feedback blocks provide string of bits to feed the encryption algorithm which act as the key-stream
generator as in case of CFB mode.

The key stream generated is XOR-ed with the plaintext blocks. The OFB mode requires an IV as the
initial random n-bit input block. The IV need not be secret.

The operation is depicted in the following illustration −

CSE
Sticky Note
https://www.youtube.com/watch?v=7t5uWEAUf_o

CSE
Sticky Note
https://www.youtube.com/watch?v=NvPw6aE5v3c

Counter CTR Mode
It can be considered as a counter-based version of CFB mode without the feedback. In this mode,
both the sender and receiver need to access to a reliable counter, which computes a new shared
value each time a ciphertext block is exchanged. This shared counter is not necessarily a secret
value, but challenge is that both sides must keep the counter synchronized.

Operation
Both encryption and decryption in CTR mode are depicted in the following illustration. Steps in
operation are −

Load the initial counter value in the top register is the same for both the sender and the
receiver. It plays the same role as the IV in CFB andCBC mode.

Encrypt the contents of the counter with the key and place the result in the bottom register.

Take the first plaintext block P1 and XOR this to the contents of the bottom register. The
result of this is C1. Send C1 to the receiver and update the counter. The counter update
replaces the ciphertext feedback in CFB mode.

Continue in this manner until the last plaintext block has been encrypted.

The decryption is the reverse process. The ciphertext block is XORed with the output of
encrypted contents of counter value. After decryption of each ciphertext block counter is
updated as in case of encryption.

Analysis of Counter Mode
It does not have message dependency and hence a ciphertext block does not depend on the
previous plaintext blocks.

Like CFB mode, CTR mode does not involve the decryption process of the block cipher. This is
because the CTR mode is really using the block cipher to generate a key-stream, which is
encrypted using the XOR function. In other words, CTR mode also converts a block cipher to a
stream cipher.

The serious disadvantage of CTR mode is that it requires a synchronous counter at sender and
receiver. Loss of synchronization leads to incorrect recovery of plaintext.

However, CTR mode has almost all advantages of CFB mode. In addition, it does not propagate
error of transmission at all.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

