
Dala Stn1clu rc and Algorithm ic Th inking with Python Trees

return(sum)

Proble m-75 Given a BST of size n, in which each node r has an additional field r ~size, the number of the
keys in the sub-tree rooted al r (including the root node r). Give an O(h) algorithm CrealertlwnConstant(r, k) 10

find lhe number of keys that arc s trictly grealer than k (Ii is the height of the bina ry i;;eurch tree).

Solution:
def GrealerthanConstanl (r, k):

keysCount "' 0
while (r}:

if (k < r .data):
keysCount = keysCount + r.right.size + l
r = r.left

else if (k > r.data):
r = r.right

else:
keysCount = keysCount + r.righl.sizc
break

return keysCount

The s u ggested algorithm works well if the key is a unique value for each node. Othenvise when reaching
k=r.data, we should s tart a process of moving to the right until reaching a node y with a key thal is bigger then
Jc, and then we i;;hould return keysCount + y.size. Time Complexily: O(lt) where /i=O(n) in the worst case a nd
O(lo9n) in lhe average case.

6.12 Balanced Binary Search Trees
in earlier sections we have seen different lrees whose worsl case complexity is O(n), where n is the number of
nodes in the tree. This happens when the trees are skew trees. ln this section we will try to reduce this worst
case complexity to O(lo9n) by imposing restrictions on the heights.

In general, the height bala nced trees a rc represented with llB(k). where k is the difference between left s ubtree
height a nd right subtree height. Sometimes le is called balance factor.

Full Balanced Binary Search Trees
In HB(k), if k = 0 (if balance factor is zero), then we call such binary search trees as full ba lanced bina ry searc h
trees. That means, in HB(O) binary search tree, Lhe difference between left subtree height a nd righ t s ubtree
height should be at mosl ze ro. This ensures that the tree is a full binary tree. For example,

Note: For constructing HB(O) tree refer lo Prohlems section.

6.13 AVL (Adelson-Velskii and Landis) Trees
In HB(k),if k = 1 (if balance factor is one), such a bina1y search tree is called an AVL tree. Thal means an AVL
tree is a binary search tree with a balance condition: the difference between left subtree heigh t a nd right subtree
height is at most 1.

Properties of AVL Trees
A bina1-y tree is said lo be an AVL tree, if:

• It is a binary search tree, a nd
For a ny node X, the height of left subtree of X and height of right s ubtree of X differ by at most I.

6 .12 Balanced Binary Search Trees 189

lsisreviving@gmail.com
Highlight

Data Structu re and Algorithmic Thinking with Python Trees

,--

' 12 ~

As an example, among the above binary search trees, the left one is not an AVL tree, whereas the right binary
search tree is an AVL tree.

Minimum/Maximum Number of Nodes in AVL Tree

For simplicity le t us assume that the height of an AVL tree is h and N(h) indicates the number of nodes in AV I.
tree with height h. To get the minimum number of nodes with height h, we should fill the tree with the minimum
number of nodes possible. That means if we fill the left subtree with height h -1 then we should fill the right
subtree with height h - 2. As a result, the minimum number of nodes with height h is:

N(h) = N(h - 1) + N(l1 - 2) + 1

In the above equation:

• N(h - 1) indicates the minimum number of nodes with height Ir - 1.

• N(h - 2) indicates the minimum number of nodes with height h - 2.
• ln the above expression, "1" indicates the current node.

We can give N(h -1) either for left subtree or right subtree. Solving the above recurrence gives:

N(h) - 0(1.618h) = h = 1.44logn =- O(logn)

T root

f
h -2

h f

l~
N(h - 2)

N(h - I)

Where n is the number of nodes in AVL tree. Also, the above derivation says that the maximum height in AVL
trees is O(logn). Similarly, to get maximum number of nodes, we need to fill both left and right subtrees with
height h - l. As a result, we get:

N(h) = N(h - 1) + N(h - l) + 1 = 2N(h - 1) + 1

The above expression defines the case uf fu ll binary tree. Solving the rec urrence we get:

:. In both the cases, AVL tree property is ensuring that the height of an AVL u·ec with 11 nodes is 0(/0911).

AVL Tree Declaration
Since AVL tree is a BST, the declarution of AVL is similar to that of BST. But just to simplify the operations, we
also include the height as pan of the dcclannion.

class AVLNode:
def _init_ (self,data,balanccFactor,left,right):

6.13 AVL (Adelson-Velskii and Landis) Trees 190

Data Structu re a nd Algorithmic Thinking with Python

self.data= data
self. balanceFactor = 0
self.left = left
self.right= right

Finding the Height of an AVL tree

def height(scU):
return self.recHeight(self.root)

def recHeight(self,root):
if root == None:

else:
return 0

leftH = self.recHcighl(r.lefl)
rightH = self. reel leighl(r.right)
if leftH>rightH:

return l +leftH
else:

return 1 +rightH

Time Complexity: 0(1).

Rotations

Trees

When the tree structure changes (e.g., with insertion or deletion), we need to modify the tree to restore the AVL
tree property. This can be done using single rotations or double rotations. Since an insertion/deletion involves
adding/deleting a s ingle node, this can on ly inc rease/decrease the height of a subtree by 1.

So, if the AVIJ tree property is violated at a node X, it means that the he ights of lefl(X) and righl(X) d iffer by
exactly 2. This is because, if we balance the AVL tree every lime, then at any point, the difference in heights of
le ft(X) and right(X) differ by exactly 2. Rotations is the technique used for rei;toring the AVL tree property. This
means, we need lo apply the rotations for the node X.

Observation: One important observation is that, after an insertion, on ly nodes that are on the path from the
insertion point to the root might have their balances altered, because only those nodes have their subtrees
a ltered. To restore the AVL tree properly, we start al the insertion point and keep going Lo the root of the tree.

While moving to the root, we need to consider the fast node that is not saLisfying the AVL property. f.rom that
node onwards, every node on the path to the root will have the isi;ue.

Also, if we fix the issue for that first node, then all other nodes on the path to the root will automatically satisfy
Lhe AVL tree property. Thal means we a lways need LO care for the first node that is not satisfying the AVL
property on the path from the inse1·tion point to the root and fix it.

Types of Violations
Let us assume the node that must be rebalanced is X. Since any node has al moi;t two ch ildren, and a height
imbalance requires that X's two subtree heights differ by two, we can observe that a violation might occu r in four
cases:

1. An insertion into the left s ubtree of the left chi ld of X.
2. An insertion into the right subtree of the le ft chi ld of X.
3. An insertion into the left subtree of the right child of X.
4. An insenion into the ri~ht subtree of Lhc right chi ld of X.

Cases 1 and 4 are symmetric and easily solved with s ingle rotations. Similarly, cases 2 and ~ arc also symmetric
and can be solved with double rotations (needs two single rotations).

Single Rotations
Left Left Rotation (LL Rotation j [Case-1]: In the case below, node X is not satisfying t he AVL tree properly. As
discussed earl ier, the rotation docs not have to be done al the root of a tree. In genera l, we ~ta rt at the node
inse1-ted and travel up the tree, updating the balance information at every node on the path.

6 .13 AVL (Adelson-Velskii and Landis) Trees 191

Dala Structu re a nd Algorithmic Thinking with Python Trees

root
root

' I \

', 9 ,'

For example, in the figure above, aflcr the insertion of 7 in the origina l AVL t ree on the left, node 9 becomes
unbalanced. So, we do a single lefl-left rotation a t 9. As a result we gel the u·cc on the right.

def singleLeftRotate(self,root):
W =root.left
root. left = W. right
W.righl = root
return W

Time Complexity : 0(1). Space Complexity: 0(1).

Right Right Rotation (RR Rotation) (Case-4]: In this case, node X is not satisfying the AVL tree property .

6.13 AVL (Adelson-Velskii and Landis) Trees 192

Dot a Structure and Algorithmic Thinking with Python Trees

For example, in the above figure, after the insertion of 29 in the original AVL Lree on the left, node 15 becomes
unbalanced . So, we do a single right-right rotation at 15. As a result we get the tree on Lhc right.

def s ingleRightRotate(self,rool):
X = root.right
root.right= X.lefl
X. lcft "' root
return X

Time Complexity: 0(1) . Space Complexity: 0(1) .

Double Rotations
Left Right Rotation (LR Rotation) (Case-2): For case-2 and case-3 single rotation does not fix the problem. We
need to perform two rotations.

' ' ' '

' ' ' \

,, ,,

\
\
I
I

I

f\s on example, le t u::; consider the following tree: Insertion of 7 is creating the case-2 scenario and right s ide
tree is the one after double rotation.

root root

- --- - II>

Code for left-right double rotation can be given as:

def righ tLefLRotalc(sclf, root):
X = rool.left
if X.balanceFactor == - 1:

root. balanceFa.ctor = 0

6 .13 AVL (Adelson-Vclski i and Landis) Trees

' \

0

root ---.....__ ,--,
~' \

: 6 ;
' _J(

\
\

\

- - - - -II> 8
08

193

Data Slrucl.u rc and Algori lhmic Thinking wilh Python

X. balanccFactor "" 0
root = self.singleLeftRotate(root)

e lse:
Y = X.right
if Y.baJanceFaclor ="'- - 1:

root.balanceFactor "' I
X.balanceFaclor .. 0

el:if Y. balanccF'actor == 0:
root . balanceFactor = 0
X.balanceFactor = 0

else:
root. balanceFaclor = 0
X. balanceFaclor = -1

Y. balanceFactor = 0
root.left = sclf.singleRighLRoate(X)
root = sclf.singlcLeftRot.atc(root)

return root

Trees

Right Left Rotation (RL Rotation) (Case -3): S imila r to casc-2, we need to perform two rolations lo fix this
scenario.

root

6.13 AVL (Adelson-Velskii and Landis) Trees

rototion
a l X

\

.. --

\
\

\
\
\
I

" .. I

I
I

194

Data Structure and Algorithmic Thinking with Python Trees

As an example, let us consider the following tree: The insertion of 6 is creating the casc-3 scenario and the right
side tree is the one after the double rotation.

def rightLeftRotate(self, root):
X = root.right
if X. balanceFactor == 1:

root.balanceFactor = 0
X.baJanceFactor = 0
root= self.singleRightRoate{r)

else:
Y = X.left
ifY.balanceFactor == - 1:

root. balanceFactor = 0
X. balanceFactor = 1

clif Y. balance Factor == 0:
root. balanceFactor = 0
X.balanceFactor = 0

else:
root. balanceFactor = -1
X. balanceFactor = 0

Y. balanceFactor = 0
root.right "' self.singleLeftRotate(X)
root = self.singleRightRoate(root)

return root

Insertion into an A VL tree
Insertion into an AVL tree is similar to a BST insertion. After inserting the element, we just need to check
whether there is any height imbalance. ff there is an imbalance, call the appropriate rotation functions.

def insert(sel.f,<lata);
newNode ""AVLNodc(data,O,None,None)
!self.root, taller] = self.recinsertA VL(self. root1 newNode)

def reclnsertAVL(self, root, newNode):
if root == None:

root = newNode
root. balanceFactor = 0
taller = True

elif newNode.data< root.data:
(root.left, taller] = self.recinsertA VL(root.left, newNode)
if taller:

else :

if root. balance Factor == 0 :
root. balanceFactor = - 1

elif root.balanceFactor == l:
root. balanceFactor= 0
taller = False

else:
root= self.rightLeftRotate(root)
taller = False

!root.right, taller] = self. reel nserlA VL(root. right, ncwNode)
if taller:

if rool.bala.nceFactor == - 1:
root. balanceFaclor = 0
taller = False

elif root. balanceFa,ctor == 0 :
root. balanceFactor = 1

else:
root = self.rightLeftRotate(root)
taller = False

return [root,tallcr]

Time Complcxily: O(logn). Space Complexity: O(logn).

6.13 AVL (Adelson-Velskii and Landis) Trees 195

