Unit III - Syllabus
 UNIT III HASH FUNCTIONS AND DIGITAL SIGNATURES (8 hours)
 Authentication requirement
 Authentication function

MAC - Hash function - Security of hash function and MAC

MD5
SHA
HMAC
CMAC-
Digital signature and authentication protocols DSS -
EI Gamal -
Schnorr.

Day 19 \& 20
Authentication requirement
Authentication function
MAC - Hash function - Security of hash function and MAC

MD5

Message Authentication Requirements

- Disclosure
- Release of message contents to any person or process not possessing the appropriate cryptographic key
- Traffic analysis
- Discovery of the pattern of traffic between parties
- Masquerade
- Insertion of messages into the network from a fraudulent source
- Content modification
- Changes to the contents of a message, including insertion, deletion, transposition, and modification
- Sequence modification
- Any modification to a sequence of messages between parties, including insertion, deletion, and reordering
- Timing modification
- Delay or replay of messages
- Source repudiation
- Denial of transmission of message by source
- Destination repudiation
- Denial of receipt of message by destination

Message Authentication Functions

- Two levels of functionality:

Lower level

- There must be some sort of function that produces an authenticator

Higher-level

- Uses the lower-level function as a primitive in an authentication protocol that enables a receiver to verify the authenticity of a message
- Hash function
- A function that maps a message of any length into a fixed-length hash value which serves as the authenticator
- Message encryption
- The ciphertext of the entire message serves as its authenticator
- Message authentication code (MAC)
- A function of the message and a secret key that produces a fixed-length value that serves as the authenticator

Figure 12.1 Basic Uses of Message Encryption

Public-Key Encryption

- The straightforward use of public-key encryption provides confidentiality but not authentication
- To provide both confidentiality and authentication, A can encrypt M first using its private key which provides the digital signature, and then using B's public key, which provides confidentiality
- Disadvantage is that the public-key algorithm must be exercised four times rather than two in each communication

MAC concept

Requirements for MACs

Figure 12.2 Internal and External Error Control

Message Digest 5 - (MD-5)

Input : blocks of 512 bits
Initial Vector: 128 bits
Output: 128 bits
For each 512 bits input: 4 rounds performed

MD5: Message Digest Version 5 input Message

Output 128 bits Digest

- Until recently the most widely used hash algorithm
- in recent times have both brute-force \& cryptanalytic concerns
- Specified as Internet standard RFC1321

MD5 Overview

MD5 Overview

1. Pad message so its length is 448 mod 512
2. Append a 64 -bit original length value to message
3. Initialise 4 -word (128 -bit) MD buffer (A,B,C,D)
4. Process message in 16 -word (512-bit) blocks:

- Using 4 rounds of 16 bit operations on message block \& buffer
- Add output to buffer input to form new buffer value

5. Output hash value is the final buffer value

Padding Twist

- Given original message M , add padding bits " 10 *" such that resulting length is 64 bits less than a multiple of 512 bits.
- Append (original length in bits mod 2^{64}), represented in 64 bits to the padded message
- Final message is chopped 512 bits a block

MD5 Process

- As many stages as the number of 512-bit blocks in the final padded message
- Digest: 4 32-bit words: MD=A|B|C|D
- Every message block contains 16 32-bit words: $\mathrm{m}_{0}\left|\mathrm{~m}_{1}\right| \mathrm{m}_{2} \ldots \mid \mathrm{m}_{15}$
- Digest MD_{0} initialized to:
$\mathrm{A}=01234567, \mathrm{~B}=89$ abcdef,C=fedcba98,
D=76543210
- Every stage consists of 4 passes over the message block, each modifying MD
- Each block 4 rounds, each round 16 steps

Processing of Block $m_{i}-4$ Passes

Different Passes...

Each step $t(0<=t<=79)$:

- Input:
$-\mathrm{m}_{\mathrm{t}}$ - a 32-bit word from the message With different shift every round
$-\mathrm{T}_{\mathrm{t}}-\operatorname{int}\left(2^{32} * \operatorname{abs}(\sin (\mathrm{i}))\right), 0<\mathrm{i}<65$
Provided a randomized set of 32-bit patterns, which eliminate any regularities in the input data
- ABCD: current MD
- Output:
- ABCD: new MD

MD5 Compression Function

- Each round has 16 steps of the form:

$$
a=b+((a+g(b, c, d)+X[k]+T[i]) \lll s)
$$

- a,b,c,d refer to the 4 words of the buffer, but used in varying permutations
- note this updates 1 word only of the buffer
- after 16 steps each word is updated 4 times
- where $\mathrm{g}(\mathrm{b}, \mathrm{c}, \mathrm{d})$ is a different nonlinear function in each round (F,G,H,I)

MD5 Compression Function

Functions and Random Numbers

- $\mathrm{F}(\mathrm{B}, \mathrm{C}, \mathrm{D})=(\mathrm{B} \wedge \mathrm{C}) \vee(\sim \mathrm{B} \wedge \mathrm{D})$
- selection function
- $G(B, C, D)==(B \wedge D) \vee(C \wedge \sim D)$
- $\mathrm{H}(\mathrm{B}, \mathrm{C}, \mathrm{D})==\mathrm{B} \oplus \mathrm{C} \oplus \mathrm{D}$
- $\mathrm{I}(\mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{C} \oplus(\mathrm{B} \wedge \sim \mathrm{D})$

