

Autonomous agents

 An agent is a computer system capable of autonomous action *in some environment* in order to meet its design objectives

CS8691-AI-UNIT IV

BDL agents – basic algorithm

BDI-interpreter

- -(B,D,I):= Initialize-state();
- -While true do
 - Update(B,D, I); // perceptions may update beliefs, desires and intentions (ex. Once fulfilled, an intention is dropped)
 - Options:= option-generator(B,D,I);
 - Selected-options:=deliberate(B,D,I);
 - Update-intentions(Selected-options,I);
 - Plan:=Planing(I,B);
 - Execute(Plan);
 - Get-new-perceptions();

-End While

Summary

- An agent is a computer system capable of flexible autonomous action in some environment.
- Situatedness: peceiving the environment via sensors and being abble to affect the environment via effectors
- Autonomy: capability of action without intervention, and control over internal state
- Flexibility:
 - Responsiveness: respond in a timely fashion to change in the environment
 - Pro-activity: actions which go beyond simple response to stimulus
 - Sociability: ability to interact with other agents and humans for mutual benefit

Agent Communication

• Designing MAS: – Agent design

– Sociaety design

- In this lecture, we cover macro-aspects of intelligent agent technology: issues relating to the agent society, rather than the individual
- Adress the sociability of the agent

Outline of the presentation

- Introduction:
 - What is cooperation?
 - Cooperative versus non-cooperative encounters
- Early systems:
 - Methode invocation
 - The blackboard architecture
- Agent Communication Languages (ACL):
 - KQML & KIF;
 - FIPA ACL
- Protocols and agent conversations:
 - The contract net protocol
 - Argumentation
 - Negotiation protocols: Bargaining and Interest based negotiation (IBN)

Working Together

- Cooperation is: the practice of working in common with mutually agreed-upon goals and possibly methods, instead of working separately in competition, and in which the success of one is dependent and contingent upon the success of another.
 - E.g. I can't play a quintet alone!
- When agents are working together, it is important to make a distinction between:
 - Benevolent agents
 - Self-interested agents: it does not mean that they want to cause harm to other agents or that they care only about themselves. It means that it follows its interest as represented by a utility function (representing the agent preferences)

Benevolent Agents

- If we "own" the whole system, or are in a cooperative environment, we can design agents that help each other whenever asked (if possible)
- In this case, we can assume agents are benevolent: others best interest is their best interest
- Problem-solving in benevolent systems is called cooperative distributed problem solving (CDPS)
- Benevolence simplifies the system design task enormously!

Self-Interested Agents

•If agents represent individuals or organizations, (the more general case), then we cannot make the benevolence assumption

- •Agents will be assumed to act to further their own interests, possibly at expense of others
- Potential for conflict.

•E.g. Competitive environment (sport, war, ...)

•May complicate the design task enormously

Task Sharing and Result Sharing

- Two main modes of cooperative problem solving:
 - Task sharing: components of a task are distributed to various agents
 - Result sharing: information (partial results, etc.) is distributed
- Both benevolent and self-interested agents have to work together and need to cooperate.
- Cooperation requires coordination
- Coordination of multiple independent autonomous agent require communication (of some sort).
- E.g. Lifting a table
- E.g. I can't play a quintet with the others if I can't ear them!