Graph Traversal

Depth-First Search
Using Stack

Breadth-First Search
Using Queue



Overview

* Goal

— To systematically visit the nodes of a graph
* A tree 1s a directed, acyclic, graph (DAG)
* If the graph is a tree,

— DFS is exhibited by preorder, postorder, and
(for binary trees) inorder traversals

— BFS is exhibited by level-order traversal



Depth-First Search

// recursive, preorder, depth-first search
void dfs (Node v) |
if (v == null)
return;

if (v not yet visited)
visit&mark (v); // wisit node before adjacent nodes

for (each w adjacent to v)
if (w has not yet been wvisited)

dfs (w) ;

} /) dfs



Example

Policy: Visit adjacent nodes in increasing index order



DFS: Start with Node 5

51032764



DFS: Start with Node 5

Push 5



DFS: Start with Node 5

Pop/Visit/Mark 5



DFS: Start with Node 5

1
2

Push 2, Push |



DFS: Start with Node 5

2

Pop/Visit/Mark 1



DFS: Start with Node 5

0
4
2

Push 4, Push 0



DFS: Start with Node 5

4
2

Pop/Visit/Mark 0



DFS: Start with Node 5

3
7
4

S|

Push 7, Push 3

510



DFS: Start with Node 5
alVa
,
K :
®@ @ :

Pop/Visit/Mark 3




DFS: Start with Node 5

Py

O

7
4
2

2 is already in stack



DFS: Start with Node 5
<l
,
< :
® @ :

Pop/Mark/Visit 7




DFS: Start with Node 5




DFS: Start with Node 5

4
2

Pop/Mark/Visit 6

510376



DFS: Start with Node 5

2

-

5103764

Pop/Mark/Visit 4



DFS: Start with Node 5

-

51037642

Pop/Mark/Visit 2



DFS: Start with Node 5

* .

Done

51037642



Breadth-first Search

Ripples in a pond
Visit designated node

Then visited unvisited nodes a distance i
away, where i = 1, 2, 3, etc.

For nodes the same distance away, visit
nodes in systematic manner (eg. increasing
index order)



Breadth-First Search

// non-recursive, preorder, breadth-first search
void bfs (Node v} |
if (v == null)
return;

engqueue (v) ;
while (gueue is not empty) |
degueue (v) ;
if (v has not yet been visited)
mark&visit (v);

for (each w adjacent teo v)
if (w has not yet been wvisited && has not been gqueued)
engueue (w) ;
} // while

} /f bfs



BFS: Start with Node 5




BFS: Start with Node 5




BFS: Node one-away




BEFS: Visit 1 and add its adjacent
nodes




BFS: Visit 2 and add its adjacent
nodes




BEFS: Visit 0 and add its adjacent
nodes




BEFS: Visit 4 and add its adjacent
nodes

é

51204

2 2 2 2B A B




BFS: Visit 3 and add its adjacent
nodes

é

512043




BFS: Visit 7 and add its adjacent
nodes

5120437

- i 2 A ol A A




BEFS: Visit 6 and add its adjacent
nodes

51204376




BFS Traversal Result

\.

51204376




Applications of BFS

Computing Distances: Given a source vertex x, compute the distance
of all vertices from x.

Checking for cycles in a graph: Given an undirected graph G, report
whether there exists a cycle in the graph or not. (Note: won’t work for
directed graphs)

Checking for bipartite graph: Given a graph, check whether it is

bipartite or not? A graph is said to be bipartite if there is a partition of
the vertex set V into two sets V, and V, such that if two vertices are

adjacent, either both are in V, or both are in V..

Reachability: Given a graph G and vertices x and y, determine if there
exists a path from x to y.




Applications of DFS

* Computing Strongly Connected Components: A directed graph is

strongly connected if there exists a path from every vertex to every
other vertex. Trivial Algo: Perform DFS n times. Efficient Algo:
Single DFS.

* Checking for Biconnected Graph: A graph is biconnected if removal of

any vertex does not affect connectivity of the other vertices. Used to
test if network is robust to failure of certain nodes. A single DFS
traversal algorithm.

* Topological Ordering: Topological sorting for Directed Acyclic Graph
(DAG) is a linear ordering of vertices such that for every directed edge
(x, »), vertex x comes before y in the ordering




