
Informed Search/ Heuristic search

 Problem information is available which can guide the search.

 Informed search strategies can find a solution more efficiently
than an uninformed search strategy.

 Informed search is also called a Heuristic search.

 Heuristic function facilitates in imparting the additional
knowledge of the problem to the algorithm in finding the way to
the goal through the various neighboring nodes.

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Heuristic Function
3

 A heuristic function h(n), is a function that calculates
an approximate cost to a problem.

 Example: shortest driving distance
 A heuristic cost would be the straight line distance to the point.
 It is simple and quick to calculate. The true distance would likely be

higher as we have to stick to roads and is much harder to calculate.
 Heuristic functions are often used in combination with search

algorithms.
 You may also see the term admissible, which means the heuristic

never overestimates the true cost i.e. the cost it estimates to reach the
goal is not higher than the lowest possible cost from the current point in
the path.

 Admissibility can be an important quality and is required for some
search algorithms like A*

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Best First Search

4

 A node is selected for expansion based on evaluation function
f(n).

 Lowest evaluation is selected for the explanation

 Implemented via a priority queue

 Best first search algorithm is often referred greedy algorithm
this is because they quickly attack the most desirable path

 At each step it tries to get as close to the goal as it can

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Properties of greedy best-first search
12

 Complete? No – It can start down an infinite path
and never return to try other possibilities

 Time? O(bm), but a good heuristic can give
dramatic improvement. m is the max depth

 Space? O(bm) -- keeps all nodes in memory

 Optimal? No

A* search
13

 A* is a path-finding and graph traversals algorithm
with completeness and optimality.

 A* search is a combination of lowest-cost-first and best-
first searches that considers both path cost and heuristic
information in its selection of which path to expand.

 A* is implemented via priority queue

 Similar to Dijkstra’s Algorithm with heuristic

 Idea: avoid expanding paths that are already
expensive

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

Gamer
Highlight

A* search
15

h(n) = estimated cost of the
cheapest path from node n to
a goal state.

f(n)= estimated cost of the
cheapest solution through n

A* search
16

f(n)= estimated cost of the
cheapest solution through n

A* search
17

f(n)= estimated cost of the
cheapest solution through n

A* search

f(n)= estimated cost of the
cheapest solution through n

A* search

f(n)= estimated cost of the
cheapest solution through n

A* search

f(n)= estimated cost of the
cheapest solution through n

Admissibility of A*

 A* always finds an optimal path, if one exists, and
that the first path found to a goal is optimal is
called the admissibility of A*.

 Admissibility means that, even when the search
space is infinite, if solutions exist, a solution will be
found and the first path found will be an optimal
solution - a lowest-cost path from a start node to a
goal node.

Pseudocode for the A* algorithm is presented
with Python-like syntax

22

while (the destination node has not been reached):

consider the node with the lowest f score in the open list

if (this node is our destination node) :

we are finished

if not:

put the current node in the closed list and look at all of its neighbors

for (each neighbor of the current node):

if (neighbor has lower g value than current and is in the closed list) :

replace the neighbor with the new, lower, g value

current node is now the neighbor's parent
else if (current g value is lower and this neighbor is in the open list) :

replace the neighbor with the new, lower, g value

change the neighbor's parent to our current node

else if this neighbor is noIntfoinrmbedotShealirscths/: Heuristic search

add it to the open list and set its g

make an openlist containing only the starting node https://brilliant.org/wiki/a-star-search/

make an empty closed list

