
Search Techniques



Searching for a (shortest / least cost) path to goal state(s).

Search through the state space.

We will consider search techniques that use an 
explicit search tree that is generated by the 
initial state + successor function.

initialize (initial node)
Loop

choose a node for expansion 
according to strategy

goal node?  done
expand node with successor function



Tree-search algorithms
Basic idea:

– simulated exploration of state space by generating successors of 
already-explored states (a.k.a. ~ expanding states)

–

Note: 1) Here we only check a node for possibly being a goal state, after we 
select the node for expansion. 
2) A “node” is a data structure containing state + additional info (parent
node, etc.

Fig. 3.7 R&N, p. 77



Tree search exampleNode selected
for expansion.



Nodes added to tree.



Selected for expansion.

Added to tree.

Note: Arad added (again) to tree!
(reachable from Sibiu)

Not necessarily a problem, but
in Graph-Search, we will avoid
this by maintaining an
“explored” list.



Graph-search

Note: 
1) Uses “explored” set to avoid visiting already explored states.
2) Uses “frontier” set to store states that remain to be explored and expanded.
3) However, with eg uniform cost search, we need to make a special check when

node (i.e. state) is on frontier. Details later.



Implementation: states vs. nodes
A state is a --- representation of --- a physical configuration.

A node is a data structure constituting part of a search tree includes 
state, tree parent node, action (applied to parent), path cost (initial 
state to node) g(x), depth

The Expand function creates new nodes, filling in the various fields 
and using the SuccessorFn of the problem to create the 
corresponding states.

Fringe is the collection of nodes that have been generated but not (yet)
expanded. Each node of the fringe is a leaf node. 



Implementation: general tree search

Gamer
Sticky Note
Fringe is a collection of nodes that have been generated but not (yet) expanded. Each fringe node is a leaf node.



Search strategies

A search strategy is defined by picking the order of node expansion. 

Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?
–

Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
–



Uninformed search strategies

– Breadth-first search
– Uniform-cost search
– Depth-first search
– Depth-limited search
– Iterative deepening search
– Bidirectional search
–

Key issue: type of queue used for the fringe of the search tree
(collection of tree nodes that have been generated but not yet 
expanded)

Uninformed (blind) search strategies use only the 
information available in the problem definition:
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Breadth-first search
Expand shallowest unexpanded node.

Implementation:
– fringe is a FIFO queue, i.e., new nodes go at end

(First In First Out queue.)

Select A from
queue and expand.

Gives
<B, C>

Fringe queue:   <A>



Queue:   <B, C>

Select B from
front, and expand.

Put children at the
end.

Gives
<C, D, E>



Fringe queue:   <C, D, E>



Fringe queue:   <D, E, F, G>

Assuming no further children, queue becomes
<E, F, G>, <F, G>, <G>, <>. Each time node checked
for goal state.



Properties of breadth-first search
Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

Space? O(bd+1) (keeps every node in memory;
needed also to reconstruct soln. path)

Optimal soln. found?
Yes (if  all step costs are identical)

Space is the bigger problem (more than time)

b: maximum branching factor of the search tree
d: depth of the least-cost solution

Note: check for 
goal only when
node is expanded.



Uniform-cost search
Expand least-cost (of path to) unexpanded node 

(e.g. useful for finding shortest path on map)
Implementation:

– fringe = queue ordered by path cost
–

Complete? Yes, if step cost ≥ ε (>0)
Time? # of nodes with g ≤ cost of optimal solution (C*),

O(b(1+C*/ ε)
Space? # of nodes with g ≤ cost of optimal solution, 

O(b(1+C*/ ε)
Optimal? Yes – nodes expanded in increasing order of g(n)
Note: Some subtleties (e.g. checking for goal state). 

See p 84 R&N. Also, next slide. 

g – cost of reaching a node



Uniform-cost search
Two subtleties: (bottom p. 83 Norvig)
1) Do goal state test, only when a node is selected for expansion.

(Reason: Bucharest may occur on frontier with a longer than
optimal path. It won’t be selected for expansion yet. Other nodes
will be expanded first, leading us to uncover a shorter path to
Bucharest. See also point 2).

2) Graph-search alg. says “don’t add child node to frontier if already on
explored list or already on frontier.” BUT, child may give a shorter path
to a state already on frontier. Then, we need to modify the existing
node on frontier with the shorter path. See fig. 3.14 (else-if part).



Depth-first search
“Expand deepest unexpanded node”

Implementation:
– fringe = LIFO queue, i.e., put successors at front (“push on stack”)

Last In First Out

Fringe stack:
A

Expanding A, 
gives stack:

B
C

So, B next.



Expanding B, 
gives stack:

D
E
C

So, D next.



Expanding D, 
gives stack:

H
I
E
C

So, H next.
etc.





















Properties of depth-first search
Complete?

Time? O(bm): bad if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first

Space?

Guarantee that
opt. soln. is found? 

Note: In “backtrack search” only one successor is generated 
 only O(m) memory is needed; also successor is modification of
the current state, but we have to be able to undo each modification.
More when we talk about Constraint Satisfaction Problems (CSP). 

b: max. branching factor of the search tree
d: depth of the shallowest (least-cost) soln.
m: maximum depth of state space

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
 complete in finite spaces

O(bm), i.e., linear space!

No

Note: Can also 
reconstruct soln. path 
from single stored 
branch.



Iterative deepening search
[here]



Iterative deepening search l =0



Iterative deepening search l =1



Iterative deepening search l =2



Iterative deepening search l =3



Combine good memory requirements of depth-first with
the completeness of breadth-first when branching factor is
finite and is optimal when the path cost is a non-decreasing

function of the depth of the node.

Why would one do that?

Idea was a breakthrough in game playing. All game
tree search uses iterative deepening nowadays. What’s
the added advantage in games?

“Anytime” nature.



Iterative deepening search
Number of nodes generated in an iterative deepening search to depth
d with branching factor b: 

NIDS = d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

Nodes generated in a breadth-first search with branching factor b: 

NBFS = b1 + b2 + … + bd-2 + bd-1 + bd

For b = 10, d = 5,

– NBFS= 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
–
– NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

Looks quite wasteful, is it?

Iterative deepening is the preferred uninformed search method
when there is a large search space and the depth of the solution

is not known.





Properties of iterative deepening search

Complete? Yes
(b finite)

Time? d b1 + (d-1)b2 + … + bd = O(bd)

Space? O(bd)

Optimal? Yes, if step costs identical



Bidirectional Search
• Simultaneously:

– Search forward from start
– Search backward from the goal

Stop when the two searches meet.

• If branching factor = b in each direction,
with solution at depth d 
 only O(2 bd/2)= O(2 bd/2)

• Checking a node for membership in the other search tree can be done in constant 
time (hash table)

• Key limitations:
Space O(bd/2) 
Also, how to search backwards can be an issue (e.g., in Chess)? What’s tricky?
Problem: lots of states satisfy the goal; don’t know which one is relevant.

Aside: The predecessor of a node should be easily computable (i.e., actions 
are easily reversible).



Repeated statesFailure to detect repeated states can turn 
linear problem into an exponential one!

Problems in which actions are reversible (e.g., routing problems or
sliding-blocks puzzle). Also, in eg Chess; uses hash tables to check
for repeated states. Huge tables 100M+ size but very useful.

Don’t return  to parent node

Don’t generate successor = node’s 
parent

Don’t allow cycles

Don’t revisit state

Keep every visited state in memory! 
O(bd) (can be expensive)

See Tree-Search vs. Graph-Search in Fig. 3.7 R&N. But need to
be careful to maintain (path) optimality and completeness.



Summary: General, uninformed search
Original search ideas in AI where inspired by studies of human problem 

solving in, eg, puzzles, math, and games, but a great many AI tasks now 
require some form of search (e.g. find optimal agent strategy; active 
learning; constraint reasoning; NP-complete problems require search).

Problem formulation usually requires abstracting away real-world details 
to define a state space that can feasibly be explored.

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time 
than other uninformed algorithms.

Avoid repeating states / cycles.




