
Introduction

Search is a central topic in AI.

Originated with Newell and Simon’s work on problem solving;
Human Problem Solving (1972).

Automated reasoning is a natural search task.

More recently: Given that almost all AI formalisms
(planning, learning, etc) are NP-Complete or worse,
some form of search is generally unavoidable
(i.e., no smarter algorithm available).

Outline

Problem-solving agents
Problem types
Problem formulation
Example problems

Problem solving agents are goal-directed agents:

1. Goal Formulation: Set of one or more (desirable)
world states (e.g. checkmate in chess).

2. Problem formulation: What actions and states to
consider given a goal and an initial state.

3. Search for solution: Given the problem, search for a
solution --- a sequence of actions to achieve the goal
starting from the initial state.

4. Execution of the solution

Problem-solving agents

Note: Formulation feels somewhat “contrived,” but was meant
to model very general (human) problem solving process.

More details on “states” soon.

Example: Path Finding problem

Formulate goal:
– be in Bucharest

(Romania)
–

Formulate problem:
– action: drive between

pair of connected cities
(direct road)

–
– state: be in a city

(20 world states)

Find solution:
– sequence of cities

leading from start to
goal state, e.g., Arad,
Sibiu, Fagaras,
Bucharest

–
Execution

– drive from Arad to
Bucharest according to
the solution

Initial
State

Goal
State

Environment: fully observable (map),
deterministic, and the agent knows effects
of each action. Is this really the case?

Note: Map is somewhat of a “toy” example. Our real
interest: Exponentially large spaces, with e.g. 10^100
or more states. Far beyond full search. Humans can
often still handle those!
One of the mysteries of cognition.

Gamer
Underline

Micro-world: The Blocks World

T
A B C

D

Initial State

A

C
D

Goal State

gripper

How many
different possible
world states?

a) Tens?
b) Hundreds?
c) Thousands?
d) Millions?
e) Billions?
f) Trillions?

Size state space of blocks world example
n = 8 objects, k = 9 locations to build towers, one gripper. (One location in box.)
All objects distinguishable, order matter in towers. (Assume stackable
in any order.)

Blocks: Use r-combinations approach from Rosen (section 5.5; CS-2800).
- - - - - - - - - - - - - - - - consider 16 = (n + k – 1) “spots”

Select k – 1 = 8 “dividers” to create locations,
(16 choose 8) ways to do this, e.g.,

| | - - - | - | | - - - | | - | Allocate n = 8 objs to remaining spots, 8! ways, e.g.,
| | 4 1 8 | 5 | | 6 3 7 | | 2 | assigns 8 objects to the 9 locations

a b c d e f g h i based on dividers

So, total number of states (ignoring gripper): (16 choose 8) * 8! = 518,918,400
* 9 for location gripper: > 4.5 billion states even in this toy domain!
Search spaces grow exponentially with domain. Still need to search them, e.g., to

Problem types
1) Deterministic, fully observable
Agent knows exactly which state it will be in; solution is a sequence of actions.

2) Non-observable --- sensorless problem
– Agent may have no idea where it is (no sensors); it reasons in terms of

belief states; solution is a sequence actions (effects of actions certain).

3) Nondeterministic and/or partially observable: contingency problem
– Actions uncertain, percepts provide new information about current

state (adversarial problem if uncertainty comes from other agents).
– Solution is a “strategy” to reach the goal.

4) Unknown state space and uncertain action effects: exploration problem
-- Solution is a “strategy” to reach the goal (end explore environment).

In
cr

ea
si

ng
 c

om
pl

ex
ity

Gamer
Sticky Note
Vaccum Cleaner with Senser

Gamer
Sticky Note
Vaccum Cleaner without Sensors

Gamer
Sticky Note
Without predicting any Actions

Gamer
Sticky Note
Online Search without knowing about states

Example: Vacuum world state space graph

states?
actions?
goal test?
path cost?

The agent is in one of 8 possible world states.
Left, Right, Suck [simplified: left out No-op]
No dirt at all locations (i.e., in one of bottom two states).
1 per action

Goal
(reach one in
this set of states)

Start state

Minimum path from Start to Goal state:
Alternative, longer plan:

3 actions
4 actions

Note: path with thousands of steps before reaching goal also exist.

Example: The 8-puzzle
“sliding tile puzzle”

states? the boards, i.e., locations of tiles
actions? move blank left, right, up, down
goal test? goal state (given; tiles in order)
path cost? 1 per move

Note: finding optimal solution of n-puzzle family is NP-hard!
Also, from certain states you can’t reach the goal.
Total number of states 9! = 362,880 (more interesting space;
not all connected… only half can reach goal state)

Aside:
variations
on goal state.
eg empty square
bottom right or
in middle.

15-puzzleGoal state

Search space:
16!/2 = 1.0461395 e+13,
about 10 trillion.
Too large to store in RAM
(>= 100 TB). A challenge to search
for a path from a given board to goal.

Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-first search. In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05).
See Fifteen Puzzle Optimal Solver. With effective search: opt. solutions in seconds!
Average: milliseconds.

Longest minimum path: 80 moves. Just 17 boards, e.g,

Average minimum soln. length: 53.

People can find solns. But not necessarily
minimum length. See solve it! (Gives strategy.)

Korf:
Disk errors
become a
problem.

st

at
es

 in
 b

ill
io

ns
Where are the 10 trillion states?

minimum distance from goal state (# moves)
dist. # states

etc.

dist. # states

17 boards farthest away from goal state (80 moves)

Each require 80 moves to reach:
Intriguing similarities. Each number
has its own few locations.

4
1

What is
it about
these 17
boards
out of
over 10
trillion?

13

<15,12,11>/
<9,10,14>

?

?
?

Interesting machine learning task:
Learn to recognize the hardest boards!
(Extremal Combinatorics, e.g. LeBras, Gomes, and Selman AAAI-12)

17 boards farthest away from goal state (80
moves)

Most regular extreme case:

Thanks to Jonathan GS

Each quadrant
reflected along
diagonal. “move
tiles furthest away”

Goal state

Searching for a solution
to the 8-puzzle.

A breadth-first search tree. (More detail soon.)

Start state

Goal

Branching factor 1, 2, or 3 (max). So, approx. 2 --- # nodes roughly doubles at
each level. Number states of explored nodes grows exponentially with depth.

Aside: in this
tree, immediate
duplicates are
removed.

For 15-puzzle, hard initial states: 80 levels deep, requires
exploring approx. 2^80 ≈ 10^24 states.

If we block all duplicates, we get closer to 10 trillion (the number of
distinct states: still a lot!).

Really only barely feasible on compute cluster with lots of memory and
compute time. (Raw numbers for 24 puzzle, truly infeasible.)

Can we avoid generating all these boards? Do with much less search?
(Key: bring average branching factor down.)

Gedanken experiment: Assume that you knew for each state, the minimum
number of moves to the final goal state. (Table too big, but assume there is
some formula/algorithm based on the board pattern that gives this number
for each board and quickly.)

Using the minimum distance information, is there a clever way to find a
minimum length sequence of moves leading from the start state to the goal
state? How?

A breadth-first search tree. (More detail soon.)

Start state

Goal

Branching factor approx. 2. So, with “distance oracle” we only need
to explore approx. 2 * (min. solution length).

d = 5

d >= 5

d >= 4 d >= 3d = 3

d >= 4d = 4

Hmm. How do I know? d = min dist. to goal

Note: at least one
neighbor with d =
4.

d = 2

d = 1

d = 0

Select

Select

d >= 1

Select

Select

Select

For 15-puzzle, hard initial states: 80 levels deep, requires exploring
approx. 2^80 ≈ 10^24 states.

But, with distance oracle, we only need to explore roughly 80 * 2 = 160
states! (only linear in size of solution length)

We may not have the exact distance function (“perfect heuristics”),
but

we can still “guide” the search using an approximate distance
function.

This is the key idea behind “heuristic search” or “knowledge-based
search.”

We use knowledge / heuristic information about the distance to the
goal to

guide our search process. We can go from exponential to polynomial
or even

A breadth-first search tree.

Start state

Goal

Perfect “heuristics,” eliminates search.

Approximate heuristics, significantly reduces search.
Best (provably) use of search heuristic info: A* search (soon).

Basic idea: State evaluation
function can effectively guide
search.

Also in multi-agent settings.
(Chess: board eval.)

Reinforcement learning:
Learn the state eval function.

State evaluation functions
or “heuristics”

Provide guidance in terms of what action to take next.

General principle: Consider all neighboring states, reachable via some
action. Then select the action that leads to the state with the highest
utility (evaluation value). This is a fully greedy approach.

Because eval function is often only an estimate of the true state value,
greedy search may not find the optimum path to the goal.

By adding some search with certain guarantees on the approximation,
we can still get optimal behavior (A* search) (i.e. finding the
optimal path to the solution). Overall result: generally
exponentially less search required.

N-puzzle heuristics (“State evaluation function” wrt to goal to be reached):

1) Manhattan Distance: For each tile the number of grid units between its
current location and its goal location are counted and the values for all
tiles are summed up. (underestimate; too “loose”; not very powerful)

2) Felner, Ariel, Korf, Richard E., Hanan, Sarit, Additive Pattern
Database Heuristics, Journal of Artificial Intelligence Research 22
(2004) 279-318. The 78 Pattern Database heuristic takes a lot of memory
but solves a random instance of the 15-puzzle within a few milliseconds
on average. An optimal solution for the 80 moves cases takes a few
seconds each. So, thousands of nodes considered instead of many
billions.

Note: many approx. heuristics (“conservative” / underestimates to goal)
combined with search can still find optimal solutions.

State evaluation function (or utility
value) is a very general and useful idea.
Example:
• In chess, given a board, what would be the

perfect evaluation value that you would want to know?
(Assume the perspective of White player.)

A: f(board)  {+1, 0, -1}, with +1 for guaranteed win for White,
0 draw under perfect play, and
-1 loss under perfect play.

Perfect play: all powerful opponent.
Given f, how would you play then?

In practice, we only know (so far) of an approximation of f.
f(board)  [-1,+1] (interval from -1 to +1)
based on “values” of chess pieces, e.g., pawn 1 point, rook 5
points.

State evaluation function (or utility
value) is a very general and useful idea.
Examples:
• TD-Gammon backgammon player. Neural net

was trained to find approximately optimal state (board)
evaluation values (range [-1,+1]). (Tesauro 1995)

• “Robocopter” --- automated helicopter control;
trained state evaluation function.
State given by features, such as,
position, orientation, speed, and
rotors position and speed. Possible
actions change rotors speed and
position. Evaluation assigns value
in [-1,+1] to capture stability. (Abbeel, Coates, and Ng 2008)

Example: Robotic assembly

states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

Other example search tasks
VLSI layout: positioning millions of components and connections on a

chip to minimize area, circuit delays, etc.

Robot navigation / planning

Automatic assembly of complex objects

Protein design: sequence of amino acids that will fold into the 3-
dimensional protein with the right properties.

Literally thousands of combinatorial search / reasoning / parsing /
matching problems can be formulated as search problems in exponential
size state spaces.

